我一直在尝试编写一个图形应用程序来演示大学项目的机器学习,我一直在用Python开发它。因为Python是一种非常慢的语言,所以我一直在寻找加速运行时执行的方法,并且偶然发现了Cython。我对C / C ++还不是很熟悉,但我已经尽可能静态地输入了我的代码(尽管警告说这会降低可读性/灵活性;这不是我目前主要关心的问题。) / p>
然而,我并没有真正注意到这种实现方式与纯Python相比有任何重大改进,我想知道是否有人有任何关于如何加速它的建议。我会非常高兴加速10倍,但我不确定这是多么逼真。
̶I̶̶h̶a̶v̶e̶n̶'̶t̶̶p̶r̶o̶f̶i̶l̶e̶d̶̶m̶y̶̶c̶o̶d̶e̶̶y̶e̶t̶我已经对我的代码进行了描述,结果链接如下。
因为它仍在进行中,所以布局不是很好,但我做了一些简单的功能分组。
可以找到源代码here。代码中最相关的部分发布在下面。
迭代给定的pad的内存:
cdef findBestApproximation(int padindex):
cdef double last_collision_x
cdef double last_collision_y
cdef double last_collision_i_angle
cdef double last_collision_i_speed
cdef double last_collision_f_angle
cdef double last_collision_f_speed
cdef double x_divergence
cdef double y_divergenve
cdef double f_angular_divergence
cdef double divergence
printData("FINDING APPROXIMATION FOR PAD %s...\n" % padindex)
pad = Pads.padlist[padindex]
memory = pad.memory
ball = Balls.ball
if not memory:
approximation = getPadMidpoint(padindex)
return approximation
collision_data = getCollisionData()
(last_collision_x, last_collision_y, last_collision_i_angle,
last_collision_i_speed, last_collision_f_angle,
last_collision_f_speed) = collision_data
best_approx = 0
strictness_coef = 1.03
for memory_tuple in memory:
(x_miss, y_miss, x_collision, y_collision, _, _, f_angle, _) = memory_tuple.getData()
(divergence, x_divergence, y_divergence, f_angular_divergence) = calculateDivergence(memory_tuple, collision_data)
divergence = x_divergence + y_divergence + f_angular_divergence
approximation = (divergence, x_miss, y_miss)
printData("\n\nPAD: %s" % padindex)
printData("\nLAST COLLISION (X) = %s, CONSIDERED CASE (X) = %s" % (last_collision_x, x_collision))
printData("pos_x DIVERGENCE: %s" % x_divergence)
printData("\nLAST COLLISION (Y) = %s, CONSIDERED CASE (Y) = %s" % (last_collision_y, y_collision))
printData("pos_y DIVERGENCE: %s" % y_divergence)
printData("\nLAST COLLISION (fAngle) = %s, CONSIDERED CASE (fAngle) = %s" % (last_collision_f_angle, f_angle))
printData("FINAL ANGLE DIVERGENCE: %s" % f_angular_divergence)
printData("\nTOTAL DIVERGENCE: %s\n\n" % divergence)
if not best_approx:
best_approx = approximation
else:
(least_divergence, _, _) = best_approx
if divergence < least_divergence:
best_approx = approximation
(_, pos_x, pos_y) = best_approx
approximation = (pos_x, pos_y)
return approximation
计算并将分数归因于存储在记忆垫内存中的特定过去事件:
cdef calculateDivergence(memory_tuple, collision_data):
cdef double pos_x_dif
cdef double pos_y_dif
cdef double i_angle_dif
cdef double i_speed_dif
cdef double f_angle_dif
cdef double f_speed_dif
cdef double max_x_difference
cdef double max_y_difference
cdef double max_angular_difference
cdef double x_divergence
cdef double y_divergence
cdef double f_angular_divergence
cdef double total_divergence
(last_collision_x, last_collision_y, last_collision_i_angle,
last_collision_i_speed, last_collision_f_angle,
last_collision_f_speed) = collision_data
(x_miss, y_miss, x_collision, y_collision,
i_angle, i_speed, f_angle, f_speed ) = memory_tuple.getData()
pos_x_dif = abs(x_collision - last_collision_x)
pos_y_dif = abs(y_collision - last_collision_y)
i_angle_dif = getAngleDifference(i_angle, last_collision_i_angle)
i_speed_dif = abs(i_speed - last_collision_i_speed)
f_angle_dif = getAngleDifference(f_angle, last_collision_f_angle)
f_speed_dif = abs(f_speed - last_collision_f_speed)
max_x_difference = window_width
max_y_difference = window_height
max_angular_difference = 180
x_divergence = 100 * pos_x_dif / max_x_difference
y_divergence = 100 * pos_y_dif / max_y_difference
f_angular_divergence = 100 * f_angle_dif / max_angular_difference
#Apply weights.
x_divergence *= WeightData.current_weight
y_divergence *= WeightData.current_weight
f_angular_divergence *= (1 - WeightData.current_weight)
total_divergence = x_divergence + y_divergence + f_angular_divergence
divergence_data = (total_divergence, x_divergence, y_divergence, f_angular_divergence)
return divergence_data
编辑:Here's分析代码的结果。 DrawSettingsMenu()是最差的之一,但可以忽略(默认情况下不显示设置菜单)。任何“初始化...”功能也可以忽略。
答案 0 :(得分:5)
您应首先分析您的代码并查看需要优化的内容。 然后你应该尝试尽可能地优化算法。 如果你在Python中识别出一个速度太慢的函数,你可以尝试使用Cython静态输入它,但是你可以通过在C语言中编写它并从Cython中调用它来获得更好的性能。但是,在优化代码之前,请确保代码正常运行,否则您将浪费时间。
答案 1 :(得分:2)
如果您只是想加快速度,可以尝试其他Python实现,如PyPy或Unladen Swallow。如果您使用的是旧版本的Python,您可能还需要查看Psyco。