我正在尝试使用Pandas进行频率计数的数据透视表。
我有以下代码:
from pandas import pivot_table, DataFrame, crosstab
import numpy as np
df=DataFrame(
{'Y':[99999991, 99999992, 99999993, 99999994, 99999995,
99999996, 99999997, 99999998, 99999999],
'X':[1, 2, 3, 4, 5, 6, 7, 8, 9],
'X2':[1, 2, 3, 4, 5, 6, 7, 8, 9]})
print pivot_table(df,rows=['Y'], cols=['X'],aggfunc=np.sum)
这是我的输出:
X 1 2 3 4 5 6 7 8 9
Y
99999991 1 NaN NaN NaN NaN NaN NaN NaN NaN
99999992 NaN 2 NaN NaN NaN NaN NaN NaN NaN
99999993 NaN NaN 3 NaN NaN NaN NaN NaN NaN
99999994 NaN NaN NaN 4 NaN NaN NaN NaN NaN
99999995 NaN NaN NaN NaN 5 NaN NaN NaN NaN
99999996 NaN NaN NaN NaN NaN 6 NaN NaN NaN
99999997 NaN NaN NaN NaN NaN NaN 7 NaN NaN
99999998 NaN NaN NaN NaN NaN NaN NaN 8 NaN
99999999 NaN NaN NaN NaN NaN NaN NaN NaN 9
这是我想要的输出:
X 1 2 3 4 5 6 7 8 9
X2
1 99999991 NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN 99999992 NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN 99999993 NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN 99999994 NaN NaN NaN NaN NaN
5 NaN NaN NaN NaN 99999995 NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN 99999996 NaN NaN NaN
7 NaN NaN NaN NaN NaN NaN 99999997 NaN NaN
8 NaN NaN NaN NaN NaN NaN NaN 99999998 NaN
9 NaN NaN NaN NaN NaN NaN NaN NaN 99999999
这就是我不断得到的:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 9 entries, 1 to 9
Data columns:
('Y', 1L) 1 non-null values
('Y', 2L) 1 non-null values
('Y', 3L) 1 non-null values
('Y', 4L) 1 non-null values
('Y', 5L) 1 non-null values
('Y', 6L) 1 non-null values
('Y', 7L) 1 non-null values
('Y', 8L) 1 non-null values
('Y', 9L) 1 non-null values
dtypes: float64(9)
有谁知道为什么?输出是否太大。我似乎找不到任何东西。
答案 0 :(得分:4)
只需将rows=['Y']
替换为rows=['X2']
>>> print pivot_table(df,rows=['X2'], cols=['X'],aggfunc=np.sum)
Y
X 1 2 3 4 5 6 7 8 9
X2
1 101 NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN 102 NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN 103 NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN 104 NaN NaN NaN NaN NaN
5 NaN NaN NaN NaN 105 NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN 106 NaN NaN NaN
7 NaN NaN NaN NaN NaN NaN 107 NaN NaN
8 NaN NaN NaN NaN NaN NaN NaN 108 NaN
9 NaN NaN NaN NaN NaN NaN NaN NaN 109
答案 1 :(得分:4)
试试这个:
In [3]: df.pivot_table('Y', rows='X', cols='X2')
X2 1 2 3 4 5 6 7 8 9
X
1 99999991 NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN 99999992 NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN 99999993 NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN 99999994 NaN NaN NaN NaN NaN
5 NaN NaN NaN NaN 99999995 NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN 99999996 NaN NaN NaN
7 NaN NaN NaN NaN NaN NaN 99999997 NaN NaN
8 NaN NaN NaN NaN NaN NaN NaN 99999998 NaN
9 NaN NaN NaN NaN NaN NaN NaN NaN 99999999
这也有效:
pivot_table(df, 'Y', rows='X', cols='X2')
或
pivot_table(df, rows='X', cols='X2')['Y']