为什么我的序列文件在我的hadoop映射器类中被读取了两次?

时间:2012-03-01 10:40:40

标签: hadoop mapper

我有一个包含1264条记录的SequenceFile。每个密钥对于每个记录都是唯一的。我的问题是我的映射器似乎正在读取此文件两次或正在读取两次。为了完整性检查,我写了一个小实用程序类来读取SequenceFile,实际上,只有1264条记录(即SequenceFile.Reader)。

在我的reducer中,每次Iterable只能获得1条记录,但是,当我遍历iterable(Iterator)时,每条Key获得2条记录(每条密钥总是2条记录,而不是每条密钥为1或3条或其他内容) )。

我的作业的日志输出如下。我不知道为什么,但为什么“处理的总输入路径”是2?当我运行我的Job时,我尝试了-Dmapred.input.dir = / data以及-Dmapred.input.dir = / data / part-r-00000,但仍然,处理的总路径是2。

任何想法都表示赞赏。

12/03/01 05:28:30 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
12/03/01 05:28:30 INFO input.FileInputFormat: Total input paths to process : 2
12/03/01 05:28:31 INFO mapred.JobClient: Running job: job_local_0001
12/03/01 05:28:31 INFO input.FileInputFormat: Total input paths to process : 2
12/03/01 05:28:31 INFO mapred.MapTask: io.sort.mb = 100
12/03/01 05:28:31 INFO mapred.MapTask: data buffer = 79691776/99614720
12/03/01 05:28:31 INFO mapred.MapTask: record buffer = 262144/327680
12/03/01 05:28:31 INFO mapred.MapTask: Starting flush of map output
12/03/01 05:28:31 INFO mapred.MapTask: Finished spill 0
12/03/01 05:28:31 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
12/03/01 05:28:31 INFO mapred.LocalJobRunner:
12/03/01 05:28:31 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000000_0' done.
12/03/01 05:28:31 INFO mapred.MapTask: io.sort.mb = 100
12/03/01 05:28:31 INFO mapred.MapTask: data buffer = 79691776/99614720
12/03/01 05:28:31 INFO mapred.MapTask: record buffer = 262144/327680
12/03/01 05:28:31 INFO mapred.MapTask: Starting flush of map output
12/03/01 05:28:31 INFO mapred.MapTask: Finished spill 0
12/03/01 05:28:31 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
12/03/01 05:28:31 INFO mapred.LocalJobRunner:
12/03/01 05:28:31 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000001_0' done.
12/03/01 05:28:31 INFO mapred.LocalJobRunner:
12/03/01 05:28:31 INFO mapred.Merger: Merging 2 sorted segments
12/03/01 05:28:31 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 307310 bytes
12/03/01 05:28:31 INFO mapred.LocalJobRunner:
12/03/01 05:28:32 INFO mapred.TaskRunner: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
12/03/01 05:28:32 INFO mapred.LocalJobRunner:
12/03/01 05:28:32 INFO mapred.TaskRunner: Task attempt_local_0001_r_000000_0 is allowed to commit now
12/03/01 05:28:32 INFO mapred.JobClient:  map 100% reduce 0%
12/03/01 05:28:32 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to results
12/03/01 05:28:32 INFO mapred.LocalJobRunner: reduce > reduce
12/03/01 05:28:32 INFO mapred.TaskRunner: Task 'attempt_local_0001_r_000000_0' done.
12/03/01 05:28:33 INFO mapred.JobClient:  map 100% reduce 100%
12/03/01 05:28:33 INFO mapred.JobClient: Job complete: job_local_0001
12/03/01 05:28:33 INFO mapred.JobClient: Counters: 12
12/03/01 05:28:33 INFO mapred.JobClient:   FileSystemCounters
12/03/01 05:28:33 INFO mapred.JobClient:     FILE_BYTES_READ=1320214
12/03/01 05:28:33 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=1275041
12/03/01 05:28:33 INFO mapred.JobClient:   Map-Reduce Framework
12/03/01 05:28:33 INFO mapred.JobClient:     Reduce input groups=1264
12/03/01 05:28:33 INFO mapred.JobClient:     Combine output records=0
12/03/01 05:28:33 INFO mapred.JobClient:     Map input records=2528
12/03/01 05:28:33 INFO mapred.JobClient:     Reduce shuffle bytes=0
12/03/01 05:28:33 INFO mapred.JobClient:     Reduce output records=2528
12/03/01 05:28:33 INFO mapred.JobClient:     Spilled Records=5056
12/03/01 05:28:33 INFO mapred.JobClient:     Map output bytes=301472
12/03/01 05:28:33 INFO mapred.JobClient:     Combine input records=0
12/03/01 05:28:33 INFO mapred.JobClient:     Map output records=2528
12/03/01 05:28:33 INFO mapred.JobClient:     Reduce input records=2528

我的mapper类非常简单。它读入一个文本文件。对于每一行,它将“m”附加到该行。

public class MyMapper extends Mapper<LongWritable, Text, LongWritable, Text> {

 private static final Log _log = LogFactory.getLog(MyMapper.class);

 @Override
 public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
  String s = (new StringBuilder()).append(value.toString()).append("m").toString();
  context.write(key, new Text(s));
  _log.debug(key.toString() + " => " + s);
 }
}

我的减速机类也很简单。它只是在行上附加“r”。

public class MyReducer extends Reducer<LongWritable, Text, LongWritable, Text> {

private static final Log _log = LogFactory.getLog(MyReducer.class);

@Override
public void reduce(LongWritable key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
 for(Iterator<Text> it = values.iterator(); it.hasNext();) {
  Text txt = it.next();
  String s = (new StringBuilder()).append(txt.toString()).append("r").toString();
  context.write(key, new Text(s));
  _log.debug(key.toString() + " => " + s);
  }
 }
}

我的Job类如下。

public class MyJob extends Configured implements Tool {

public static void main(String[] args) throws Exception {
 ToolRunner.run(new Configuration(), new MyJob(), args);
}

@Override
public int run(String[] args) throws Exception {
 Configuration conf = getConf();
 Path input = new Path(conf.get("mapred.input.dir"));
 Path output = new Path(conf.get("mapred.output.dir"));

 System.out.println("input = " + input);
 System.out.println("output = " + output);

 Job job = new Job(conf, "dummy job");
 job.setMapOutputKeyClass(LongWritable.class);
 job.setMapOutputValueClass(Text.class);
 job.setOutputKeyClass(LongWritable.class);
 job.setOutputValueClass(Text.class);

 job.setMapperClass(MyMapper.class);
 job.setReducerClass(MyReducer.class);

 FileInputFormat.addInputPath(job, input);
 FileOutputFormat.setOutputPath(job, output);

 job.setJarByClass(MyJob.class);

 return job.waitForCompletion(true) ? 0 : 1;
 }
}

我的输入数据如下所示。

T, T
T, T
T, T
F, F
F, F
F, F
F, F
T, F
F, T

运行我的作业后,我得到如下输出。

0   T, Tmr
0   T, Tmr
6   T, Tmr
6   T, Tmr
12  T, Tmr
12  T, Tmr
18  F, Fmr
18  F, Fmr
24  F, Fmr
24  F, Fmr
30  F, Fmr
30  F, Fmr
36  F, Fmr
36  F, Fmr
42  T, Fmr
42  T, Fmr
48  F, Tmr
48  F, Tmr

我在设置工作时做错了什么?我尝试了以下方式来运行我的Job,并且在这种方法中,文件只被读取一次。为什么是这样? System.out.println(inpath)和System.out.println(outpath)值是相同的!帮助

public class MyJob2 {

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length != 2) {
      System.err.println("Usage: MyJob2 <in> <out>");
      System.exit(2);
    }

    String sInput = args[0];
    String sOutput = args[1];

    Path input = new Path(sInput);
    Path output = new Path(sOutput);

    System.out.println("input = " + input);
    System.out.println("output = " + output);

    Job job = new Job(conf, "dummy job");
    job.setMapOutputKeyClass(LongWritable.class);
    job.setMapOutputValueClass(Text.class);
    job.setOutputKeyClass(LongWritable.class);
    job.setOutputValueClass(Text.class);

    job.setMapperClass(MyMapper.class);
    job.setReducerClass(MyReducer.class);

    FileInputFormat.addInputPath(job, input);
    FileOutputFormat.setOutputPath(job, output);

    job.setJarByClass(MyJob2.class);

    int result = job.waitForCompletion(true) ? 0 : 1;
    System.exit(result);
 }
}

2 个答案:

答案 0 :(得分:3)

我从hadoop邮件列表中得到了帮助。我的问题在于以下一行。

FileInputFormat.addInputPath(job, input);

此行只是将输入附加回配置。注释掉这一行后,输入文件现在只读一次。事实上,我也评论了另一条线,

FileOutputFormat.setOutputPath(job, output);

并且一切仍然有效。

答案 1 :(得分:0)

我遇到了类似的问题,但由于其他原因:linux显然创建了我的输入文件(~input.txt)的隐藏副本,这是获得此错误的第二种方式..