让我们假设以下给定的类定义:
class Numeric(object):
def __init__(self, signal):
self.signal = signal
现在,由于要求Numeric
不从numpy.ndarray
继承,我如何扩展Numeric
表现得像numpy.ndarray
的定义?
修改 signal
应为np.ndarray
(或类似quantities.Quantity
)。我有以下的想法:
import numpy as np
import quantities as pq
a = Numeric(pq.Quantity([1,2,3], 'mV'))
b = Numeric(pq.Quantity([1,3,5], 's'))
c = Numeric(np.array([10,20,30]))
a = Numeric(np.array([1,2,3]))
b = Numeric(np.array([1,3,5]))
a * c
a * b
a * np.array([3,4,5])
和:
import matplotlib.pyplot as plt
plt.plot(b)
答案 0 :(得分:1)
使用装扮器调整numpy
- 函数以及__array__
Numeric
的实现,我可以解决大多数问题:
def adapt_signal_functions(cls):
def generateAdjustedFunction(functionName):
print functionName
def foo(self, *args, **kwargs):
function = getattr(self.signal.__class__, functionName)
return function(self.signal, *args, **kwargs)
return foo
functionNames = [
'_get_units',
'_set_units',
'rescale',
'ptp',
'clip',
'copy',
'compress',
'conj',
'cumprod',
'cumsum',
'diagonal',
'dot',
'flatten',
'getfield',
'round',
'trace',
'max',
'mean',
'min',
'newbyteorder',
'prod',
'ravel',
'reshape',
'resize',
'round',
'std',
'sum',
'trace',
'transpose',
'var',
'__getitem__',
'__getslice__',
'__abs__',
#
'__add__',
'__div__',
'__divmod__',
'__floordiv__'
'__mod__',
'__mul__',
'__pow__',
'__sub__',
#
'__radd__',
'__div__',
'__divmod__',
'__rfloordiv__',
'__rmod__',
'__imul__',
#'__rmul__',
'__rpow__',
'__rsub__',
]
for functionName in functionNames:
foo = generateAdjustedFunction(functionName)
setattr(cls, functionName, foo)
return cls
@adapt_signal_functions
class Numeric(object):
def __init__(self, signal):
self.signal = signal
self.adapt_quantity()
def adapt_quantity(self):
if hasattr(self.signal, '_dimensionality'):
self._dimensionality = self.signal._dimensionality
self.dimensionality = self.signal.dimensionality
def __array__(self):
return self.signal
我能做到:
import numpy as np
import quantities as pq
a = Numeric(pq.Quantity([1,2,3], 'mV'))
b = Numeric(pq.Quantity([1,3,5], 's'))
c = Numeric(np.array([10,20,30]))
n = np.array([1,2,3])
a * a
a * c
a * n
a.max()
print type(a * n) == type(a.signal * n)
# >>> True
print type(a * c) == type(a.signal * c.signal)
# >>> True
返回类型对应于Numeric.signal
的等效返回类型。
仍然存在一个问题:
print type(n * a) == type(n * a.signal)
# >>> False
任何想法,如何解决这个问题?