如何使用斯坦福解析器将文本拆分成句子?

时间:2012-02-29 02:19:54

标签: java parsing artificial-intelligence nlp stanford-nlp

如何使用Stanford parser将文字或段落分割成句子?

是否有任何方法可以提取句子,例如为Ruby提供的getSentencesFromString()

12 个答案:

答案 0 :(得分:30)

您可以检查DocumentPreprocessor类。以下是一个简短的片段。我认为可能还有其他方法可以做你想做的事。

String paragraph = "My 1st sentence. “Does it work for questions?” My third sentence.";
Reader reader = new StringReader(paragraph);
DocumentPreprocessor dp = new DocumentPreprocessor(reader);
List<String> sentenceList = new ArrayList<String>();

for (List<HasWord> sentence : dp) {
   // SentenceUtils not Sentence
   String sentenceString = SentenceUtils.listToString(sentence);
   sentenceList.add(sentenceString);
}

for (String sentence : sentenceList) {
   System.out.println(sentence);
}

答案 1 :(得分:23)

我知道已有一个已接受的答案......但通常你只是从带注释的文档中获取SentenceAnnotations。

// creates a StanfordCoreNLP object, with POS tagging, lemmatization, NER, parsing, and coreference resolution 
Properties props = new Properties();
props.put("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

// read some text in the text variable
String text = ... // Add your text here!

// create an empty Annotation just with the given text
Annotation document = new Annotation(text);

// run all Annotators on this text
pipeline.annotate(document);

// these are all the sentences in this document
// a CoreMap is essentially a Map that uses class objects as keys and has values with custom types
List<CoreMap> sentences = document.get(SentencesAnnotation.class);

for(CoreMap sentence: sentences) {
  // traversing the words in the current sentence
  // a CoreLabel is a CoreMap with additional token-specific methods
  for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
    // this is the text of the token
    String word = token.get(TextAnnotation.class);
    // this is the POS tag of the token
    String pos = token.get(PartOfSpeechAnnotation.class);
    // this is the NER label of the token
    String ne = token.get(NamedEntityTagAnnotation.class);       
  }

}

来源 - http://nlp.stanford.edu/software/corenlp.shtml(一半)

如果你只是在寻找句子,你可以从管道初始化中删除后面的步骤,如“解析”和“dcoref”,这样可以节省一些负载和处理时间。摇滚乐。 〜ķ

答案 2 :(得分:15)

接受的答案有几个问题。首先,tokenizer转换一些字符,例如字符“into two characters``。其次,将标记化文本与空格连接在一起并不会返回与之前相同的结果。因此,接受的答案中的示例文本以非平凡的方式转换输入文本。

但是,令牌化程序使用的CoreLabel类会跟踪它们映射到的源字符,因此如果您有原始字符串,则重建正确的字符串是微不足道的。

下面的方法1显示了接受的答案方法,方法2显示了我的方法,它克服了这些问题。

String paragraph = "My 1st sentence. “Does it work for questions?” My third sentence.";

List<String> sentenceList;

/* ** APPROACH 1 (BAD!) ** */
Reader reader = new StringReader(paragraph);
DocumentPreprocessor dp = new DocumentPreprocessor(reader);
sentenceList = new ArrayList<String>();
for (List<HasWord> sentence : dp) {
    sentenceList.add(Sentence.listToString(sentence));
}
System.out.println(StringUtils.join(sentenceList, " _ "));

/* ** APPROACH 2 ** */
//// Tokenize
List<CoreLabel> tokens = new ArrayList<CoreLabel>();
PTBTokenizer<CoreLabel> tokenizer = new PTBTokenizer<CoreLabel>(new StringReader(paragraph), new CoreLabelTokenFactory(), "");
while (tokenizer.hasNext()) {
    tokens.add(tokenizer.next());
}
//// Split sentences from tokens
List<List<CoreLabel>> sentences = new WordToSentenceProcessor<CoreLabel>().process(tokens);
//// Join back together
int end;
int start = 0;
sentenceList = new ArrayList<String>();
for (List<CoreLabel> sentence: sentences) {
    end = sentence.get(sentence.size()-1).endPosition();
    sentenceList.add(paragraph.substring(start, end).trim());
    start = end;
}
System.out.println(StringUtils.join(sentenceList, " _ "));

输出:

My 1st sentence . _ `` Does it work for questions ? '' _ My third sentence .
My 1st sentence. _ “Does it work for questions?” _ My third sentence.

答案 3 :(得分:7)

使用.net C#包: 这将拆分句子,使括号正确并保留原始空格和标点符号:

public class NlpDemo
{
    public static readonly TokenizerFactory TokenizerFactory = PTBTokenizer.factory(new CoreLabelTokenFactory(),
                "normalizeParentheses=false,normalizeOtherBrackets=false,invertible=true");

    public void ParseFile(string fileName)
    {
        using (var stream = File.OpenRead(fileName))
        {
            SplitSentences(stream);
        }
    }

    public void SplitSentences(Stream stream)
    {            
        var preProcessor = new DocumentPreprocessor(new UTF8Reader(new InputStreamWrapper(stream)));
        preProcessor.setTokenizerFactory(TokenizerFactory);

        foreach (java.util.List sentence in preProcessor)
        {
            ProcessSentence(sentence);
        }            
    }

    // print the sentence with original spaces and punctuation.
    public void ProcessSentence(java.util.List sentence)
    {
        System.Console.WriteLine(edu.stanford.nlp.util.StringUtils.joinWithOriginalWhiteSpace(sentence));
    }
}

<强>输入:   - 这句话的人物具有一定的魅力,常见于标点符号和散文。这是第二句话?确实如此。

<强>输出: 3个句子('?'被认为是句末结尾分隔符)

注意:对于像“郝薇香夫人的班级在所有方面都无可挑剔(就人们所见!)这样的句子而言。”标记器将正确地识别出太太结束时的时间段不是EOS,但它会错误地标记!在括号内作为EOS并在“所有方面”分开。作为第二句话。

答案 4 :(得分:3)

使用Stanford CoreNLP版本3.6.0或3.7.0提供的Simple API

以下是3.6.0的示例。它与3.7.0完全相同。

Java Code Snippet

import java.util.List;

import edu.stanford.nlp.simple.Document;
import edu.stanford.nlp.simple.Sentence;
public class TestSplitSentences {
    public static void main(String[] args) {
        Document doc = new Document("The text paragraph. Another sentence. Yet another sentence.");
        List<Sentence> sentences = doc.sentences();
        sentences.stream().forEach(System.out::println);
    }
}

收率:

  

案文段落。

     

另一句话。

     

又一句话。

的pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>stanfordcorenlp</groupId>
    <artifactId>stanfordcorenlp</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
    </properties>

    <dependencies>
        <!-- https://mvnrepository.com/artifact/edu.stanford.nlp/stanford-corenlp -->
        <dependency>
            <groupId>edu.stanford.nlp</groupId>
            <artifactId>stanford-corenlp</artifactId>
            <version>3.6.0</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/com.google.protobuf/protobuf-java -->
        <dependency>
            <groupId>com.google.protobuf</groupId>
            <artifactId>protobuf-java</artifactId>
            <version>2.6.1</version>
        </dependency>
    </dependencies>
</project>

答案 5 :(得分:1)

你可以很容易地使用斯坦福标记器。

String text = new String("Your text....");  //Your own text.
List<List<HasWord>> tokenizedSentences = MaxentTagger.tokenizeText(new StringReader(text));

for(List<CoreLabel> act : tokenizedSentences)       //Travel trough sentences
{
    System.out.println(edu.stanford.nlp.ling.Sentence.listToString(act)); //This is your sentence
}

答案 6 :(得分:0)

您可以使用document preprocessor。这真的很容易。只需输入文件名即可。

    for (List<HasWord> sentence : new DocumentPreprocessor(pathto/filename.txt)) {
         //sentence is a list of words in a sentence
    }

答案 7 :(得分:0)

解决问题的@Kevin答案的变体如下:

for(CoreMap sentence: sentences) {
      String sentenceText = sentence.get(TextAnnotation.class)
}

可以在不打扰其他注释器的情况下获取句子信息。

答案 8 :(得分:0)

除了一些低估的答案之外没有解决的另一个因素是如何设置句子分隔符?默认情况下,最常见的方法是依赖于表示句子结尾的常用标点符号。人们可能会在收集的语料库上绘制其他文档格式,其中一个是每行都是它自己的句子。

要在接受的答案中设置DocumentPreprocessor的分隔符,您可以使用setSentenceDelimiter(String)。要使用@Kevin在答案中建议的管道方法,可以使用ssplit属性。例如,要使用上一段中提出的行结束方案,可以将属性ssplit.eolonly设置为true

答案 9 :(得分:0)

在以下代码中添加输入和输出文件的路径:-

import java.util.*;
import edu.stanford.nlp.pipeline.*;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
public class NLPExample
{
    public static void main(String[] args) throws IOException 
    {
        PrintWriter out;
        out = new PrintWriter("C:\\Users\\ACER\\Downloads\\stanford-corenlp-full-     
        2018-02-27\\output.txt");
        Properties props=new Properties();
        props.setProperty("annotators","tokenize, ssplit, pos,lemma");
        StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
        Annotation annotation;  
        String readString = null;
        PrintWriter pw = null;
        BufferedReader br = null;
        br = new BufferedReader (new 
        FileReader("C:\\Users\\ACER\\Downloads\\stanford- 
        corenlp-full-2018-02-27\\input.txt" )  ) ;
        pw = new PrintWriter ( new BufferedWriter ( new FileWriter ( 
        "C:\\Users\\ACER\\Downloads\\stanford-corenlp-full-2018-02-   
        27\\output.txt",false 
        ))) ;      
        String x = null;
        while  (( readString = br.readLine ())  != null)
        {
            pw.println ( readString ) ; String 
            xx=readString;x=xx;//System.out.println("OKKKKK"); 
            annotation = new Annotation(x);
            pipeline.annotate(annotation);    //System.out.println("LamoohAKA");
            pipeline.prettyPrint(annotation, out);
        }
        br.close (  ) ;
        pw.close (  ) ;
        System.out.println("Done...");
    }    
}

答案 10 :(得分:-4)

public class k {

public static void main(String a[]){

    String str = "This program splits a string based on space";
    String[] words = str.split(" ");
    for(String s:words){
        System.out.println(s);
    }
    str = "This     program  splits a string based on space";
    words = str.split("\\s+");
}
}

答案 11 :(得分:-5)

使用正则表达式将分割文本转换为句子, 在使用正则表达式但在java中我不知道。

string [] sentences = Regex.Split(text,@“(?&lt; = ['”“a-za-z] [\]] [\。\!\?])\ s +(?= [ AZ])“);

90%有效