例如,命令:
openssl enc -aes-256-cbc -a -in test.txt -k pinkrhino -nosalt -p -out openssl_output.txt
输出如下内容:
key = 33D890D33F91D52FC9B405A0DDA65336C3C4B557A3D79FE69AB674BE82C5C3D2
iv = 677C95C475C0E057B739750748608A49
该密钥是如何产生的? (作为答案的C代码太棒了要求:)) 另外,iv是如何产生的?
对我来说看起来像是某种十六进制。
答案 0 :(得分:35)
OpenSSL使用函数EVP_BytesToKey。您可以在apps/enc.c
中找到对它的调用。如果您未使用enc
参数指定不同的摘要,则-md
实用程序默认情况下会在密钥派生算法(KDF)中使用MD5摘要。现在它默认使用SHA-256。这是使用MD5的一个工作示例:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/evp.h>
int main(int argc, char *argv[])
{
const EVP_CIPHER *cipher;
const EVP_MD *dgst = NULL;
unsigned char key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH];
const char *password = "password";
const unsigned char *salt = NULL;
int i;
OpenSSL_add_all_algorithms();
cipher = EVP_get_cipherbyname("aes-256-cbc");
if(!cipher) { fprintf(stderr, "no such cipher\n"); return 1; }
dgst=EVP_get_digestbyname("md5");
if(!dgst) { fprintf(stderr, "no such digest\n"); return 1; }
if(!EVP_BytesToKey(cipher, dgst, salt,
(unsigned char *) password,
strlen(password), 1, key, iv))
{
fprintf(stderr, "EVP_BytesToKey failed\n");
return 1;
}
printf("Key: "); for(i=0; i<cipher->key_len; ++i) { printf("%02x", key[i]); } printf("\n");
printf("IV: "); for(i=0; i<cipher->iv_len; ++i) { printf("%02x", iv[i]); } printf("\n");
return 0;
}
使用示例:
gcc b2k.c -o b2k -lcrypto -g
./b2k
Key: 5f4dcc3b5aa765d61d8327deb882cf992b95990a9151374abd8ff8c5a7a0fe08
IV: b7b4372cdfbcb3d16a2631b59b509e94
生成与此OpenSSL命令行相同的密钥:
openssl enc -aes-256-cbc -k password -nosalt -p < /dev/null
key=5F4DCC3B5AA765D61D8327DEB882CF992B95990A9151374ABD8FF8C5A7A0FE08
iv =B7B4372CDFBCB3D16A2631B59B509E94
OpenSSL 1.1.0c changed the digest algorithm。以前使用MD5,1.1.0切换到SHA256。请注意,更改不会影响EVP_BytesToKey
和openssl enc
等命令。
答案 1 :(得分:1)
如果有人想在SWIFT中实现相同的功能
我在swift中转换了List<Key<Campaign>> keys = result3.stream()
.map(Record2::value1)
.collect(Collectors.toList());
EVP_BytesToKey
我使用CryptoSwift作为哈希。 这是一种更清洁的方式,因为苹果不建议在iOS中使用OpenSSL
更新:Swift 3
答案 2 :(得分:1)
这是mbedTLS / Polar SSL的一个版本 - 经过测试和运行。
typedef int bool;
#define false 0
#define true (!false)
//------------------------------------------------------------------------------
static bool EVP_BytesToKey( const unsigned int nDesiredKeyLen, const unsigned char* salt,
const unsigned char* password, const unsigned int nPwdLen,
unsigned char* pOutKey, unsigned char* pOutIV )
{
// This is a re-implemntation of openssl's password to key & IV routine for mbedtls.
// (See openssl apps/enc.c and /crypto/evp/evp_key.c) It is not any kind of
// standard (e.g. PBKDF2), and it only uses an interation count of 1, so it's
// pretty crappy. MD5 is used as the digest in Openssl 1.0.2, 1.1 and late
// use SHA256. Since this is for embedded system, I figure you know what you've
// got, so I made it compile-time configurable.
//
// The signature has been re-jiggered to make it less general.
//
// See: https://wiki.openssl.org/index.php/Manual:EVP_BytesToKey(3)
// And: https://www.cryptopp.com/wiki/OPENSSL_EVP_BytesToKey
#define IV_BYTE_COUNT 16
#if BTK_USE_MD5
# define DIGEST_BYTE_COUNT 16 // MD5
#else
# define DIGEST_BYTE_COUNT 32 // SHA
#endif
bool bRet;
unsigned char md_buf[ DIGEST_BYTE_COUNT ];
mbedtls_md_context_t md_ctx;
bool bAddLastMD = false;
unsigned int nKeyToGo = nDesiredKeyLen; // 32, typical
unsigned int nIVToGo = IV_BYTE_COUNT;
mbedtls_md_init( &md_ctx );
#if BTK_USE_MD5
int rc = mbedtls_md_setup( &md_ctx, mbedtls_md_info_from_type( MBEDTLS_MD_MD5 ), 0 );
#else
int rc = mbedtls_md_setup( &md_ctx, mbedtls_md_info_from_type( MBEDTLS_MD_SHA256 ), 0 );
#endif
if (rc != 0 )
{
fprintf( stderr, "mbedutils_md_setup() failed -0x%04x\n", -rc );
bRet = false;
goto exit;
}
while( 1 )
{
mbedtls_md_starts( &md_ctx ); // start digest
if ( bAddLastMD == false ) // first time
{
bAddLastMD = true; // do it next time
}
else
{
mbedtls_md_update( &md_ctx, &md_buf[0], DIGEST_BYTE_COUNT );
}
mbedtls_md_update( &md_ctx, &password[0], nPwdLen );
mbedtls_md_update( &md_ctx, &salt[0], 8 );
mbedtls_md_finish( &md_ctx, &md_buf[0] );
//
// Iteration loop here in original removed as unused by "openssl enc"
//
// Following code treats the output key and iv as one long, concatentated buffer
// and smears as much digest across it as is available. If not enough, it takes the
// big, enclosing loop, makes more digest, and continues where it left off on
// the last iteration.
unsigned int ii = 0; // index into mb_buf
if ( nKeyToGo != 0 ) // still have key to fill in?
{
while( 1 )
{
if ( nKeyToGo == 0 ) // key part is full/done
break;
if ( ii == DIGEST_BYTE_COUNT ) // ran out of digest, so loop
break;
*pOutKey++ = md_buf[ ii ]; // stick byte in output key
nKeyToGo--;
ii++;
}
}
if ( nIVToGo != 0 // still have fill up IV
&& // and
ii != DIGEST_BYTE_COUNT // have some digest available
)
{
while( 1 )
{
if ( nIVToGo == 0 ) // iv is full/done
break;
if ( ii == DIGEST_BYTE_COUNT ) // ran out of digest, so loop
break;
*pOutIV++ = md_buf[ ii ]; // stick byte in output IV
nIVToGo--;
ii++;
}
}
if ( nKeyToGo == 0 && nIVToGo == 0 ) // output full, break main loop and exit
break;
} // outermost while loop
bRet = true;
exit:
mbedtls_md_free( &md_ctx );
return bRet;
}
答案 3 :(得分:1)
如果有人在这里通过Haskell寻找一个有效的高效参考实现,那么它就是:
import Crypto.Hash
import qualified Data.ByteString as B
import Data.ByteArray (convert)
import Data.Monoid ((<>))
evpBytesToKey :: HashAlgorithm alg =>
Int -> Int -> alg -> Maybe B.ByteString -> B.ByteString -> (B.ByteString, B.ByteString)
evpBytesToKey keyLen ivLen alg mSalt password =
let bytes = B.concat . take required . iterate go $ hash' passAndSalt
(key, rest) = B.splitAt keyLen bytes
in (key, B.take ivLen rest)
where
hash' = convert . hashWith alg
required = 1 + ((keyLen + ivLen - 1) `div` hashDigestSize alg)
passAndSalt = maybe password (password <>) mSalt
go = hash' . (<> passAndSalt)
它使用cryptonite包提供的哈希算法。参数是期望的键和IV大小(以字节为单位),要使用的哈希算法(例如(undefined :: MD5)
),可选的盐和密码。结果是一个键和IV的元组。