今晚我发布了一个版本(如下所示),但感觉就像我从另一个程序语言移植它,并没有利用许多'纯'的Prolog功能。
只需运行它,然后每次按Enter键进行下一代。
有一个版本(迷宫比例)Here
在攻击Prolog问题时我注意到的一件事是,总有(99%的时间)是一个更整洁的实现,这次感觉就是这种情况。
您能想到的任何更好的实施方案?我对我不满意。它有效,而且效率不高(?),但仍然......
似乎我可以更好地利用统一,即。而不是将邻居视为X,Y相对于我单独检查的任何给定单元格的坐标,我可以以某种方式让Prolog为我做一些繁重的工作。
% Conway Game of Life (Stack Overflow, 'magus' implementation)
% The life grid, 15x15
grid([
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,1,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,1,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
]
).
% Infinite generates sep with keystroke
% -------------------------------------
life(Grid) :-
dumpgen(Grid),
onegen(Grid, 0, NewGrid),
get_single_char(_),
life(NewGrid).
% Dumps a generation out
% ----------------------
dumpgen([]) :- nl.
dumpgen([H|T]) :-
write(H), nl,
dumpgen(T).
% Does one generation
% --------------------------------
onegen(_, 15, []).
onegen(Grid, Row, [NewRow|NewGrid]) :-
xformrow(Grid, Row, 0, NewRow),
NRow is Row + 1,
onegen(Grid, NRow, NewGrid).
% Transforms one row
% --------------------------------
xformrow(_, _, 15, []).
xformrow(Grid, Row, Col, [NewState|NewList]) :-
xformstate(Grid, Row, Col, NewState),
NewCol is Col + 1,
xformrow(Grid, Row, NewCol, NewList).
% Request new state of any cell
% --------------------------------
xformstate(Grid, Row, Col, NS) :-
cellstate(Grid, Row, Col, CS),
nextstate(Grid, Row, Col, CS, NS).
% Calculate next state of any cell
% --------------------------------
% Cell is currently dead
nextstate(Grid, Row, Col, 0, NS) :-
neightotal(Grid, Row, Col, Total),
(Total =:= 3 -> NS = 1 ; NS = 0).
% Cell is currently alive
nextstate(Grid, Row, Col, 1, NS) :-
neightotal(Grid, Row, Col, Total),
((Total =:= 2; Total =:=3)
-> NS = 1; NS = 0).
% State of all surrounding neighbours
%-------------------------------------
neightotal(Grid, Row, Col, TotalSum) :-
% Immediately neighbours X, Y
XM1 is Col - 1,
XP1 is Col + 1,
YM1 is Row - 1,
YP1 is Row + 1,
% State at all those compass points
cellstate(Grid, YM1, Col, N),
cellstate(Grid, YM1, XP1, NE),
cellstate(Grid, Row, XP1, E),
cellstate(Grid, YP1, XP1, SE),
cellstate(Grid, YP1, Col, S),
cellstate(Grid, YP1, XM1, SW),
cellstate(Grid, Row, XM1, W),
cellstate(Grid, YM1, XM1, NW),
% Add up the liveness
TotalSum is N + NE + E + SE + S + SW + W + NW.
% State at any given row/col - 0 or 1
% -----------------------------------
% Valid range, return it's state
cellstate(Grid, Row, Col, State) :-
between(0, 14, Row),
between(0, 14, Col),
nth0(Row, Grid, RL),
nth0(Col, RL, State).
% Outside range is dead
cellstate(_, _, _, 0).
执行:
[debug] ?- grid(X), life(X).
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,1,0,1,0,1,0,0,0,0,0]
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0]
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0]
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0]
[0,0,0,0,0,1,0,1,0,1,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0]
[0,0,0,0,1,1,0,0,0,1,1,0,0,0,0]
[0,0,0,0,1,1,1,0,1,1,1,0,0,0,0]
[0,0,0,0,1,1,0,0,0,1,1,0,0,0,0]
[0,0,0,0,0,0,1,0,1,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0]
[0,0,0,0,1,0,0,0,0,0,1,0,0,0,0]
[0,0,0,1,0,0,1,0,1,0,0,1,0,0,0]
[0,0,0,0,1,0,0,0,0,0,1,0,0,0,0]
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
etc.
答案 0 :(得分:2)
我认为逻辑的简单性要求最简单的数据结构,并且最终与其他语言类似。
但暂时,我们可以使用SWI-Prolog提供的无限精度整数和位域运算符:然后一行可以是一个整数,测试一个单元的状态可以“立即”将3行一起移动,并且屏蔽低位:我们只需要考虑9位,即512个值,可以预先计算。当然,边界检查可能会使算法复杂化:然后一些“带外”填充可能会有所帮助。
这应该很容易做到。
编辑:我的努力:
% Conway Game of Life (Stack Overflow, 'chac' implementation)
%
:- module(lifec, [play/0]).
play :-
grid(G),
lifec(G).
% The life grid, 15x15
grid([
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,1,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,1,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
]
).
% Infinite generates sep with keystroke
% -------------------------------------
lifec(Grid) :-
make_ints(Grid, Ints, Size),
lifei(Ints, Size).
lifei(Ints, Size) :-
dumpgen(Ints, Size),
onegen(Ints, Size, NewInts),
get_single_char(_),
!, lifei(NewInts, Size).
dumpgen(Ints, Size) :-
forall(member(I, Ints),
( for_next(1, Size, _, show_bit(I)), nl) ).
onegen(Matrix, Size, NewMatrix) :-
findall(NewBits,
(three_rows(Matrix, Size, Rows),
rowstate(Rows, 0, Size, 0, NewBits)), NewMatrix).
three_rows(Matrix, Size, Rows) :-
nth1(I, Matrix, Row),
( I > 1 -> U is I - 1, nth1(U, Matrix, Up) ; Up = 0 ),
( I < Size -> D is I + 1, nth1(D, Matrix, Down) ; Down = 0 ),
% padding: add 0 bit to rightmost position
maplist(lshift, [Up, Row, Down], Rows).
:- dynamic evopatt/2.
rowstate([_, _, _], Size, Size, NewBits, NewBits) :- !.
rowstate([U, R, D], I, Size, Accum, Result) :-
Key is (U /\ 7) \/ ((R /\ 7) << 3) \/ ((D /\ 7) << 6),
evopatt(Key, Bit),
Accum1 is Accum \/ (Bit << I),
maplist(rshift, [U,R,D], P),
J is I + 1,
rowstate(P, J, Size, Accum1, Result).
%% initialization
%
make_ints(Grid, Ints, Size) :-
length(Grid, Size),
maplist(set_bits(0, 0), Grid, Ints),
% precompute evolution patterns
retractall(evopatt(_, _)),
for_next(0, 511, _, add_evopatt).
add_evopatt(N) :-
maplist(take_bit(N), [0,1,2], U),
maplist(take_bit(N), [3,4,5], V),
maplist(take_bit(N), [6,7,8], Z),
rule(U, V, Z, Bit),
assert(evopatt(N, Bit)).
% rules from Rosetta Code
%
rule([A,B,C],[D,0,F],[G,H,I],1) :- A+B+C+D+F+G+H+I =:= 3.
rule([_,_,_],[_,0,_],[_,_,_],0).
rule([A,B,C],[D,1,F],[G,H,I],0) :- A+B+C+D+F+G+H+I < 2.
rule([A,B,C],[D,1,F],[G,H,I],1) :- A+B+C+D+F+G+H+I =:= 2.
rule([A,B,C],[D,1,F],[G,H,I],1) :- A+B+C+D+F+G+H+I =:= 3.
rule([A,B,C],[D,1,F],[G,H,I],0) :- A+B+C+D+F+G+H+I > 3.
%% utilities
%
:- meta_predicate for_next(+,+,-,1).
for_next(From, To, N, Pred) :-
forall(between(From, To, N), call(Pred, N)).
lshift(X, Y) :- Y is X << 1.
rshift(X, Y) :- Y is X >> 1.
show_bit(I, P) :-
take_bit(I, P - 1, 1) -> put(0'*) ; put(0' ).
take_bit(N, Pos, Bit) :-
Bit is (N >> Pos) /\ 1.
set_bits(_Index, Accum, [], Accum).
set_bits(Index, Accum, [ZeroOne|Rest], Number) :-
Accum1 is Accum \/ (ZeroOne << Index),
Index1 is Index + 1,
set_bits(Index1, Accum1, Rest, Number).