给定一个数字,在尾随0. 9之前找到5位数! = 362880 所以f(9)= 36288 10! = 3628800所以f(10)= 36288 20! = 2432902008176640000 所以f(20)= 17664求f(1,000,000,000,000)
为此,我计算了f(10^6)
然后f(10^12) =
(f(10^6))^(10^6)
来计算f(n)
...我正在计算
通过删除任何5和相应的2所以所有的因子
尾随零被删除。
但我得到了错误的答案
方法有问题或有些愚蠢的错误吗?
参考代码
long long po(long long n, long long m, long long mod) {
if (m == 0) return 1;
if (m == 1) return n % mod;
long long r = po(n, m / 2, mod) % mod;
if (m % 2 == 0) return (r * r) % mod;
return (((r * r) % mod) * n) % mod;
}
void foo() {
unsigned long long i, res = 1, m = 1000000 , c = 0, j, res1 = 1, mod;
mod = ceil(pow(10, 9));
cout << mod << endl;
long long a = 0, a2 = 0, a5 = 0;
for (i = 1 ; i <= m; i++) {
j = i;
while (j % 10 == 0)
j /= 10;
while (j % 2 == 0) {
j /= 2;
a2++;
}
while (j % 5 == 0) {
j /= 5;
a5++;
}
res = (res * j ) % mod;
}
a = a2 - a5;
for (i = 1; i <= a; i++)
res = (res * 2) % mod;
for (i = 1; i <= 1000000; i++) {
res1 = (res1 * res) % mod;
}
cout << res1 << endl;
}
答案 0 :(得分:6)
您的平等f(10^12) = (f(10^6))^(10^6)
是错误的。 f()基于阶乘,而不是权力。
答案 1 :(得分:0)
您的假设是错误的:
10
,2
和5
的所有倍数是不够的。删除10
的倍数是个好主意,对于5
和2
,只有当另一个被乘数分别为5和2的倍数时,才应删除因子2或5。 / LI>
你应该简化代码并计算模数为10的幂,但10 ^ 9似乎太高,因为 10 ^ 9 * 10 ^ 12 将溢出64位类型unsigned long long
。