使用python / PIL的图像轮廓

时间:2012-02-16 22:02:27

标签: python-imaging-library

我有一张苹果彩色照片,我怎样才能用python / PIL显示它的轮廓(白色内部,背景黑色)?

3 个答案:

答案 0 :(得分:28)

这样的事情应该有效。

from PIL import Image, ImageFilter

image = Image.open('your_image.png')
image = image.filter(ImageFilter.FIND_EDGES)
image.save('new_name.png') 

如果这不能提供您正在寻找的结果,那么您尝试使用PIL和Python实现Prewitt边缘检测,Sobel边缘检测或Canny边缘检测,其他库请参阅相关的question和以下{ {3}}。

如果您尝试进行粒子检测/分析而不仅仅是边缘检测,可以尝试使用example调用链接的ImageJ方法以获得相同的结果,或者尝试使用其他粒子分析Python库py4ij您可以使用PIL,SciPy和NumPy编写粒子检测算法。

答案 1 :(得分:4)

如果您的对象和背景具有相当好的对比度

from PIL import Image
image = Image.open(your_image_file)
mask=image.convert("L")
th=150 # the value has to be adjusted for an image of interest 
mask = mask.point(lambda i: i < th and 255)
mask.save(file_where_to_save_result)

如果对比度较高(3种颜色),您可以将图像分割成条带而不是将其转换为灰度。

如果图像或背景相当复杂,则需要更复杂的处理

答案 2 :(得分:1)

Apple vs Lines 您只需在不到 200 行代码中使用 PIL 和 Python 即可完成。使用库中的 canny-edge-detection 会更容易。
这是步骤。转换为流明的灰度。使用内核图像处理使用 Sobel 检测边缘。使用从 Sobel 获得的幅度和斜率来细化边缘。

from PIL import Image
import math


def one_to_two_dimension_array(list_,columns):
    #use list slice
    return [ list_[i:i+columns] for i in range(0, len(list_),columns) ] 

def flatten_matrix(matrix):
    return [val for sublist in matrix for val in sublist]

def matrix_convole(matrix, kernel_matrix, multiplier):
    return_list=[]
    return_matrix=[]

    border=(len(kernel_matrix) - 1) / 2;border=int(border)
    center_kernel_pos=border
    for matrix_row in range( len( matrix )):
        for matrix_col in range(len( matrix[matrix_row] ) ):
            accumulator = 0
            if (matrix_row - border)<0 or \
            (matrix_col-border)< 0 or \
            (matrix_row+border) > (len( matrix )-border) or \
            (matrix_col+border) > (len( matrix[matrix_row] )-border):
                return_list.append(matrix[matrix_row][matrix_col])
                continue
            for kernel_row in range(len (kernel_matrix) ):
                for kernel_col in range(len (kernel_matrix[kernel_row]) ):      

                    relative_row= kernel_row - center_kernel_pos
                    relative_col= kernel_col - center_kernel_pos
                    kernel = kernel_matrix[kernel_row][kernel_col]
                    pixel = matrix [matrix_row + relative_row] [matrix_col + relative_col]
                    accumulator += pixel * kernel
            return_list.append(accumulator* multiplier )
    return_matrix = one_to_two_dimension_array( return_list, len( matrix[0] ) )
    return return_matrix
            
def canny_round_degree(deg):
    #0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5, 180

    if deg >= 0 and deg <= 22.5:
        return 0
    elif deg >= 22.5 and deg <= 67.5:
        return 45
    elif deg > 67.5 and deg <=112.5:
        return 90
    elif deg > 112.5 and deg <=157.5:
        return 135
    elif deg >= 157.5 and deg <= 180:
        return 0

    if deg <= 0 and deg >= -22.5:
        return 0
    elif deg <= -22.5 and deg >= -67.5:
        return 135
    elif deg < -67.5 and deg >= -112.5:
        return 90
    elif deg < -112.5 and deg >= -157.5:
        return 45
    elif deg <= -157.5 and deg >= -180:
        return 0

image_path='apple.jpg'
gaussian_5x5_kernel=[[2,4,5,4,2],[4,9,12,9,4],[5,12,15,12,5],[4,9,12,9,4],[2,4,5,4,2]] #multiplier 1/159
sobel_kernel_gx=[[-1,0,1],[-2,0,2],[-1,0,1]]
sobel_kernel_gy=[[-1,-2,-1],[0,0,0],[1,2,1]] 
im_list=list(Image.open(image_path).convert('L').getdata(0)) #grayscale, get first channel
im_width=Image.open(image_path).width
im_height=Image.open(image_path).height
im_matrix = one_to_two_dimension_array(im_list, im_width)

im_matrix_blur=matrix_convole(im_matrix,gaussian_5x5_kernel, 1/159)

sobel_gx_matrix=matrix_convole(im_matrix_blur,sobel_kernel_gx, 1)
sobel_gy_matrix=matrix_convole(im_matrix_blur,sobel_kernel_gy, 1)

sobel_gy_list=flatten_matrix(sobel_gy_matrix) 
sobel_gx_list=flatten_matrix(sobel_gx_matrix) 

sobel_g_magnitude_list = [math.hypot(gy,gx) for gx,gy in zip(sobel_gx_list,sobel_gy_list)]


sobel_g_angle_list = [ canny_round_degree(math.degrees(math.atan2(gy,gx))) for gx,gy in zip(sobel_gx_list,sobel_gy_list)]

sobel_g_angle_matrix = one_to_two_dimension_array(sobel_g_angle_list, im_width)
sobel_g_magnitude_matrix = one_to_two_dimension_array(sobel_g_magnitude_list, im_width)
suppression_list = []
for s_row in range( len( sobel_g_angle_matrix)):
    for s_col in range(len( sobel_g_angle_matrix[s_row] ) ):
        if (s_row - 1)<0 or \
            (s_col-1)< 0 or \
            (s_row+1) > (len( sobel_g_angle_matrix )-1) or \
            (s_col+1) > (len( sobel_g_angle_matrix[s_row] )-1):
            suppression_list.append(0)
            continue
    
        magnitude_in_question = sobel_g_magnitude_matrix[s_row][s_col]
        #thresholding magnitude continue, arbitrary 129
        if magnitude_in_question < 36:
            suppression_list.append(0)
            continue    

        angle_in_question = sobel_g_angle_matrix[s_row][s_col]

        east_magnitude = sobel_g_magnitude_matrix[s_row][s_col-1]
        west_magnitude = sobel_g_magnitude_matrix[s_row][s_col+1]
        north_magnitude = sobel_g_magnitude_matrix[s_row-1][s_col]
        south_magnitude = sobel_g_magnitude_matrix[s_row+1][s_col]
        north_east_magnitude = sobel_g_magnitude_matrix[s_row-1][s_col-1]
        north_west_magnitude = sobel_g_magnitude_matrix[s_row-1][s_col+1]
        south_east_magnitude = sobel_g_magnitude_matrix[s_row+1][s_col-1]
        south_west_magnitude = sobel_g_magnitude_matrix[s_row+1][s_col+1]       
        if angle_in_question == 0 and magnitude_in_question > east_magnitude \
            and magnitude_in_question > west_magnitude:
            suppression_list.append(1)  
        elif angle_in_question == 90 and magnitude_in_question > north_magnitude \
            and magnitude_in_question > south_magnitude:
            suppression_list.append(1)  
        elif angle_in_question == 135 and magnitude_in_question > north_west_magnitude \
            and magnitude_in_question > south_east_magnitude:
            suppression_list.append(1)  
        elif angle_in_question == 45 and magnitude_in_question > north_east_magnitude \
            and magnitude_in_question > south_west_magnitude:
            suppression_list.append(1)  
        else:
            suppression_list.append(0)  
            

new_img = Image.new('1', (im_width,im_height)) #bw=1;grayscale =L
new_img.putdata( suppression_list )
new_img.save('apple-lines.png', 'PNG')