内存有效的多值映射

时间:2012-02-16 21:27:32

标签: java performance memory map memory-efficient

您好我有以下问题: 我在MultiValueMap<String, Integer>中存储字符串和相应的整数值列表 我存储了大约1300亿个字符串,一个字符串可以包含多达500个或更多的值。 对于每个值,我将在地图上随机访问。所以最糟糕的情况是13 000 000 * 500看涨期权。现在地图的速度很好但内存开销却很高。 MultiValueMap<String, Integer>只是HashMap/TreeMap<String, <ArrayList<Integer>>。 HashMap和TreeMap都有很多内存开销。一旦完成,我就不会修改地图,但我需要它在程序中随机访问的速度要快且尽可能小。 (我将它存储在磁盘上并在启动时加载它,序列化的映射文件占用大约600mb但在内存中大约需要3gb?)

最有效的内存是将String存储在已排序的字符串数组中,并为值提供相应的二维int数组。因此,访问将是字符串数组上的二进制搜索并获取相应的值。

现在我有三种方法可以实现目标:

  1. 我使用一个已排序的MultivalueMap(TreeMap)来创建所有内容。在我完成获取所有值后,我通过调用map.keyset().toArray(new String[0]);来获取字符串数组。创建一个二维int数组并从多值映射中获取所有值。 Pro:它易于实现,在创建过程中仍然很快。 Con:从Map到Arrays的复制过程中占用的内存更多。

  2. 我从一开始就使用Arrays或ArrayLists,并将所有内容存储在那里 专业:最小的内存开销。 Con:这将非常慢,因为每次添加一个新Key时我都必须对Array进行排序/复制。另外,我需要实现自己的(可能更慢)排序,以保持相应的int数组的顺序相同字符串。难以实施

  3. 我使用Arrays和MultivalueMap作为缓冲区。程序完成创建阶段的10%或20%后,我会将值添加到数组并保持顺序,然后启动一个新的Map。 Pro:足够的速度和足够的内存效率。 骗局:难以实施。

  4. 这些解决方案都不适合我。您是否知道此问题的任何其他解决方案,可能是内存高效(MultiValue)Map实现?

    我知道我可以使用数据库,所以不要把它作为答案发布。我想知道如何在不使用数据库的情况下做到这一点。

5 个答案:

答案 0 :(得分:5)

如果您切换到Guava的Multimap - 我不知道您的应用程序是否可行 - 您可能可以使用Trove并获取

ListMultimap<String, Integer> multimap = Multimaps.newListMultimap(
  new HashMap<String, Collection<Integer>>(),
  new Supplier<List<Integer>>() {
    public List<Integer> get() {
      return new TIntListDecorator();
    }
  });

这将使ListMultimap使用HashMap映射到由List数组支持的int[]值,这应该是内存效率的,但您需要付费由于拳击,一个小的速度惩罚。您可以为MultiValueMap执行类似的操作,但我不知道来自哪个库。

答案 1 :(得分:2)

根据您在映射中存储的Integer值,可能会因为具有不同的Integer实例而导致大量的堆内存开销,这些实例占用的RAM比原始int值多得多。

考虑使用Map中的String到浮动的众多IntArrayList实现中的一个(例如,在 Colt 用于Java的原始集合中) ),基本上实现一个由int数组支持的List ,而不是由一组Integer实例支持。

答案 2 :(得分:2)

您可以使用compressed strings大幅减少内存使用量。

此外,还有other个更激烈的解决方案(需要重新实现):

答案 3 :(得分:2)

首先,考虑整数占用的内存。你说的范围大约是0-4000000。 24位足以表示16777216个不同的值。如果这是可以接受的,你可以使用字节数组作为整数,每个整数3个字节,并节省25%。你必须索引这样的数组:

int getPackedInt(byte[] array, int index) {
  int i = index*3;
  return ((array[i] & 0xFF)<<16) + ((array[i+1] & 0xFF) <<8) + (array[i+2] & 0xFF);
}
int storePackedInt(byte[] array, int index, int value) {
  assert value >= 0 && value <= 0xFFFFFF;
  int i = index*3;
  array[i]   = (byte)((value>>16) & 0xFF);
  array[i+1] = (byte)((value>>8)  & 0xFF);
  array[i+2] = (byte)(value & 0xFF);
}

你能说一下整数的分布吗?如果它们中的许多符合16位,则可以使用每个数字具有可变字节数的编码(类似于UTF-8用于表示字符)。

接下来,考虑是否可以在字符串上节省内存。字符串有什么特点?它们通常会持续多长时间?许多字符串会共享前缀吗?根据应用程序的特性量身定制的压缩方案可以节省大量空间(如falsarella指出的那样)。或者,如果许多字符串将共享前缀,则将它们存储在某种类型的搜索中可能会更有效。 (有一种称为“patricia”的trie可能适用于此应用程序。)作为奖励,请注意在搜索字符串中搜索字符串可以更快而不是搜索哈希映射(尽管你我必须进行基准测试,看看你的申请中是否属实。)

字符串都是ASCII吗?如果是这样,用于字符串的50%的内存将被浪费,因为Java char是16位。同样,在这种情况下,您可以考虑使用字节数组。

如果你只需要查看字符串,而不是遍历存储的字符串,你也可以考虑一些非常规的东西:哈希字符串,并只保留哈希值。由于不同的String可以散列到相同的值,因此有可能仍然可以通过搜索“找到”从未存储过的字符串。但是如果你为哈希值使用了足够的比特(以及一个好的哈希函数),那么你可以使这个机会如此无限小,几乎肯定不会在宇宙的估计寿命中发生。

最后,结构本身有内存,它包含字符串和整数。我已经建议使用trie,但是如果你决定不这样做,那么没有什么比并行数组使用更少的内存 - 一个排序的字符串数组(你可以进行二进制搜索,如你所说),以及一个并行数组整数数组。在进行二进制搜索以查找String数组的索引之后,可以使用相同的索引来访问整数数组。

在构建结构时,如果您确定搜索trie是一个不错的选择,我会直接使用它。否则,您可以执行2次传递:一次构建一组字符串(然后将它们放入一个数组并对它们进行排序),第二次传递以添加整数数组。

答案 4 :(得分:2)

如果您的密钥字符串存在模式,特别是常见的根,则a Trie可能是存储数据量显着减少的有效方法。

以下是工作TrieMap的代码。

注意:使用EntrySet迭代Map的常规建议 适用于Trie。它们在Trie中效率极低,因此请尽量避免请求。

/**
 * Implementation of a Trie structure.
 * 
 * A Trie is a compact form of tree that takes advantage of common prefixes
 * to the keys. 
 * 
 * A normal HashSet will take the key and compute a hash from it, this hash will
 * be used to locate the value through various methods but usually some kind
 * of bucket system is used. The memory footprint resulting becomes something
 * like O(n).
 * 
 * A Trie structure essentuially combines all common prefixes into a single key.
 * For example, holding the strings A, AB, ABC and ABCD will only take enough 
 * space to record the presence of ABCD. The presence of the others will be 
 * recorded as flags within the record of ABCD structure at zero cost.
 * 
 * This structure is useful for holding similar strings such as product IDs or
 * credit card numbers.
 *  
 */
public class TrieMap<V> extends AbstractMap<String, V> implements Map<String, V> {


  /**
   * Map each character to a sub-trie.
   * 
   * Could replace this with a 256 entry array of Tries but this will handle
   * multibyte character sets and I can discard empty maps. 
   * 
   * Maintained at null until needed (for better memory footprint).
   * 
   */
  protected Map<Character, TrieMap<V>> children = null;

  /**
   * Here we store the map contents.
   */
  protected V leaf = null;

  /**
   * Set the leaf value to a new setting and return the old one.
   * 
   * @param newValue
   * @return old value of leaf.
   */
  protected V setLeaf(V newValue) {
    V old = leaf;
    leaf = newValue;
    return old;
  }

  /**
   * I've always wanted to name a method something like this.
   */
  protected void makeChildren () {
    if ( children == null ) {
      // Use a TreeMap to ensure sorted iteration.
      children = new TreeMap<Character, TrieMap<V>>();
    }
  }

  /**
   * Finds the TrieMap that "should" contain the key.
   * 
   * @param key 
   * 
   * The key to find.
   * 
   * @param grow 
   * 
   * Set to true to grow the Trie to fit the key.
   * 
   * @return 
   * 
   * The sub Trie that "should" contain the key or null if key was not found and
   * grow was false.
   */
  protected TrieMap<V> find(String key, boolean grow) {
    if (key.length() == 0) {
      // Found it!
      return this;
    } else {
      // Not at end of string.
      if (grow) {
        // Grow the tree.
        makeChildren();
      }
      if (children != null) {
        // Ask the kids.
        char ch = key.charAt(0);
        TrieMap<V> child = children.get(ch);
        if (child == null && grow) {
          // Make the child.
          child = new TrieMap<V>();
          // Store the child.
          children.put(ch, child);
        }
        if (child != null) {
          // Find it in the child.
          return child.find(tail(key), grow);
        }
      }
    }
    return null;

  }

  /**
   * Remove the head (first character) from the string.
   * 
   * @param s
   * 
   * The string.
   * 
   * @return 
   * 
   * The same string without the first (head) character.
   * 
   */
  // Suppress warnings over taking a subsequence
  private String tail(String s) {
    return s.substring(1, s.length());
  }

  /**
   * 
   * Add a new value to the map.
   * 
   * Time footprint = O(s.length).
   * 
   * @param s
   * 
   * The key defining the place to add.
   * 
   * @param value
   * 
   * The value to add there.
   * 
   * @return
   * 
   * The value that was there, or null if it wasn't.
   * 
   */
  @Override
  public V put(String key, V value) {
    V old = null;

    // If empty string.
    if (key.length() == 0) {
      old = setLeaf(value);
    } else {
      // Find it.
      old = find(key, true).put("", value);
    }

    return old;
  }

  /**
   * Gets the value at the specified key position.
   * 
   * @param o
   * 
   * The key to the location.
   * 
   * @return 
   * 
   * The value at that location, or null if there is no value at that location.
   */
  @Override
  public V get(Object o) {
    V got = null;
    if (o != null) {
      String key = (String) o;
      TrieMap<V> it = find(key, false);
      if (it != null) {
        got = it.leaf;
      }
    } else {
      throw new NullPointerException("Nulls not allowed.");
    }
    return got;
  }

  /**
   * Remove the value at the specified location.
   * 
   * @param o
   * 
   * The key to the location.
   * 
   * @return 
   * 
   * The value that was removed, or null if there was no value at that location.
   */
  @Override
  public V remove(Object o) {
    V old = null;
    if (o != null) {
      String key = (String) o;
      if (key.length() == 0) {
        // Its me!
        old = leaf;
        leaf = null;
      } else {
        TrieMap<V> it = find(key, false);
        if (it != null) {
          old = it.remove("");
        }
      }
    } else {
      throw new NullPointerException("Nulls not allowed.");
    }
    return old;
  }

  /**
   * Count the number of values in the structure.
   * 
   * @return 
   * 
   * The number of values in the structure.
   */
  @Override
  public int size() {
    // If I am a leaf then size increases by 1.
    int size = leaf != null ? 1 : 0;
    if (children != null) {
      // Add sizes of all my children.
      for (Character c : children.keySet()) {
        size += children.get(c).size();
      }
    }
    return size;
  }

  /**
   * Is the tree empty?
   * 
   * @return 
   * 
   * true if the tree is empty.
   * false if there is still at least one value in the tree.
   */
  @Override
  public boolean isEmpty() {
    // I am empty if I am not a leaf and I have no children 
    // (slightly quicker than the AbstaractCollection implementation).
    return leaf == null && (children == null || children.isEmpty());
  }

  /**
   * Returns all keys as a Set.
   * 
   * @return 
   * 
   * A HashSet of all keys.
   * 
   * Note: Although it returns Set<S> it is actually a Set<String> that has been
   * home-grown because the original keys are not stored in the structure 
   * anywhere.
   */
  @Override
  public Set<String> keySet() {
    // Roll them a temporary list and give them a Set from it.
    return new HashSet<String>(keyList());
  }

  /**
   * List all my keys.
   * 
   * @return 
   * 
   * An ArrayList of all keys in the tree.
   * 
   * Note: Although it returns List<S> it is actually a List<String> that has been
   * home-grown because the original keys are not stored in the structure 
   * anywhere.
   * 
   */
  protected List<String> keyList() {
    List<String> contents = new ArrayList<String>();

    if (leaf != null) {
      // If I am a leaf, a null string is in the set.
      contents.add((String) "");
    }

    // Add all sub-tries.
    if (children != null) {
      for (Character c : children.keySet()) {
        TrieMap<V> child = children.get(c);
        List<String> childContents = child.keyList();
        for (String subString : childContents) {
          // All possible substrings can be prepended with this character.
          contents.add((String) (c + subString.toString()));
        }
      }
    }

    return contents;
  }

  /**
   * Does the map contain the specified key.
   * 
   * @param key
   * 
   * The key to look for.
   * 
   * @return 
   * 
   * true if the key is in the Map.
   * false if not.
   */
  public boolean containsKey(String key) {
    TrieMap<V> it = find(key, false);
    if (it != null) {
      return it.leaf != null;
    }
    return false;
  }

  /**
   * Represent me as a list.
   * 
   * @return 
   * 
   * A String representation of the tree.
   */
  @Override
  public String toString() {
    List<String> list = keyList();
    //Collections.sort((List<String>)list);
    StringBuilder sb = new StringBuilder();
    Separator comma = new Separator(",");
    sb.append("{");
    for (String s : list) {
      sb.append(comma.sep()).append(s).append("=").append(get(s));
    }
    sb.append("}");
    return sb.toString();
  }

  /**
   * Clear down completely.
   */
  @Override
  public void clear() {
    children = null;
    leaf = null;
  }

  /**
   * Return a list of key/value pairs.
   * 
   * @return 
   * 
   * The entry set.
   */
  public Set<Map.Entry<String, V>> entrySet() {
    Set<Map.Entry<String, V>> entries = new HashSet<Map.Entry<String, V>>();
    List<String> keys = keyList();
    for (String key : keys) {
      entries.add(new Entry<String,V>(key, get(key)));
    }
    return entries;
  }

  /**
   * An entry.
   * 
   * @param <S>
   * 
   * The type of the key.
   * 
   * @param <V> 
   * 
   * The type of the value.
   */
  private static class Entry<S, V> implements Map.Entry<S, V> {

    protected S key;
    protected V value;

    public Entry(S key, V value) {
      this.key = key;
      this.value = value;
    }

    public S getKey() {
      return key;
    }

    public V getValue() {
      return value;
    }

    public V setValue(V newValue) {
      V oldValue = value;
      value = newValue;
      return oldValue;
    }

    @Override
    public boolean equals(Object o) {
      if (!(o instanceof TrieMap.Entry)) {
        return false;
      }
      Entry e = (Entry) o;
      return (key == null ? e.getKey() == null : key.equals(e.getKey()))
              && (value == null ? e.getValue() == null : value.equals(e.getValue()));
    }

    @Override
    public int hashCode() {
      int keyHash = (key == null ? 0 : key.hashCode());
      int valueHash = (value == null ? 0 : value.hashCode());
      return keyHash ^ valueHash;
    }

    @Override
    public String toString() {
      return key + "=" + value;
    }
  }
}