实现cumsum的优雅和pythonic方法是什么? 或者 - 如果已经有一种内置的方式来做,那当然会更好......
答案 0 :(得分:45)
可在Numpy中找到:
>>> import numpy as np
>>> np.cumsum([1,2,3,4,5])
array([ 1, 3, 6, 10, 15])
或者从Python 3.2开始使用itertools.accumulate
:
>>> from itertools import accumulate
>>> list(accumulate([1,2,3,4,5]))
[ 1, 3, 6, 10, 15]
如果Numpy不是一个选项,那么生成器循环将是我能想到的最优雅的解决方案:
def cumsum(it):
total = 0
for x in it:
total += x
yield total
实施例
>>> list(cumsum([1,2,3,4,5]))
>>> [1, 3, 6, 10, 15]
答案 1 :(得分:6)
我的想法是以功能性的方式使用reduce:
from operator import iadd
reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), [1, 2, 3, 4, 5], [0])[1:]
>>> [1, 3, 6, 10, 15]
来自运营商模块的iadd具有进行就地添加并返回目的地的独特属性。
如果[1:]副本让你感到畏缩,你也可以这样做:
from operator import iadd
reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm),
[1, 2, 3, 4, 5], ([], 0))[0]
>>> [1, 3, 6, 10, 15]
但是我发现本地第一个例子比第一个例子快得多,而且IMO生成器比像'reduce'这样的函数式编程更加pythonic:
reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), values_ten, ([], 0))[0]
Average: 6.4593828736e-06
reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), values_mil, ([], 0))[0]
Average: 0.727404361961
reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), values_ten, [0])[1:]
Average: 5.16271911336e-06
reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), values_mil, [0])[1:]
Average: 0.524223491301
cumsum_rking(values_ten)
Average: 1.9828751369e-06
cumsum_rking(values_mil)
Average: 0.234241141632
list(cumsum_larsmans(values_ten))
Average: 2.02786211569e-06
list(cumsum_larsmans(values_mil))
Average: 0.201473119335
这是基准脚本,YMMV:
from timeit import timeit
def bmark(prog, setup, number):
duration = timeit(prog, setup=setup, number=number)
print prog
print 'Average:', duration / number
values_ten = list(xrange(10))
values_mil = list(xrange(1000000))
from operator import iadd
bmark('reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), \
values_ten, ([], 0))[0]',
setup='from __main__ import iadd, values_ten', number=1000000)
bmark('reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), \
values_mil, ([], 0))[0]',
setup='from __main__ import iadd, values_mil', number=10)
bmark('reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), \
values_ten, [0])[1:]',
setup='from __main__ import iadd, values_ten', number=1000000)
bmark('reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), \
values_mil, [0])[1:]',
setup='from __main__ import iadd, values_mil', number=10)
def cumsum_rking(iterable):
values = list(iterable)
for pos in xrange(1, len(values)):
values[pos] += values[pos - 1]
return values
bmark('cumsum_rking(values_ten)',
setup='from __main__ import cumsum_rking, values_ten', number=1000000)
bmark('cumsum_rking(values_mil)',
setup='from __main__ import cumsum_rking, values_mil', number=10)
def cumsum_larsmans(iterable):
total = 0
for value in iterable:
total += value
yield total
bmark('list(cumsum_larsmans(values_ten))',
setup='from __main__ import cumsum_larsmans, values_ten', number=1000000)
bmark('list(cumsum_larsmans(values_mil))',
setup='from __main__ import cumsum_larsmans, values_mil', number=10)
这是我的Python版本字符串:
Python 2.7 (r27:82525, Jul 4 2010, 09:01:59) [MSC v.1500 32 bit (Intel)] on win32
答案 2 :(得分:5)
a = [1, 2, 3 ,4, 5]
# Using list comprehention
cumsum = [sum(a[:i+1]) for i in range(len(a))] # [1, 3, 6, 10, 15]
# Using map()
cumsum = map(lambda i: sum(a[:i+1]), range(len(a))) # [1, 3, 6, 10, 15]
答案 3 :(得分:2)
到位:
a=[1,2,3,4,5]
def cumsum(a):
for i in range(1,len(a)):
a[i]+=a[i-1]
cumsum(a)
print a
"[1, 3, 6, 10, 15]"
答案 4 :(得分:2)
def cumsum(a):
return map(lambda x: sum( a[0:x+1] ), range( 0, len(a) ))
cumsum([1,2,3])
> [1, 3, 6]
答案 5 :(得分:1)
for循环是pythonic
def cumsum(vec):
r = [vec[0]]
for val in vec[1:]:
r.append(r[-1] + val)
return r
答案 6 :(得分:1)
a=[1,2,3,4,5]
def cumsum(a):
a=iter(a)
cc=[next(a)]
for i in a:
cc.append(cc[-1]+i)
return cc
print cumsum(a)
"[1, 3, 6, 10, 15]"
答案 7 :(得分:1)
a=[1,2,3,4,5]
def cumsum(a):
b=a[:]
for i in range(1,len(a)):
b[i]+=b[i-1]
return b
print cumsum(a)
"[1, 3, 6, 10, 15]"
答案 8 :(得分:0)
我更新了@GrantJ的答案,并在Jupyter中使用Python 3进行了计时。我添加了以下简单的accumulate
示例:
def cumsum_acc(iterable):
return accumulate(iterable)
时间表明这种方法是最快的:
reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), values_ten, ([], 0))[0]
Average: 4.18553415873987e-06
reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), values_mil, ([], 0))[0]
Average: 0.4559302114011018
reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), values_ten, [0])[1:]
Average: 3.3726942356950078e-06
reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), values_mil, [0])[1:]
Average: 0.4217967894903154
cumsum_rking(values_ten)
Average: 2.2734952410773416e-06
cumsum_rking(values_mil)
Average: 0.24106813411868303
list(cumsum_larsmans(values_ten))
Average: 1.5819200433296032e-06
list(cumsum_larsmans(values_mil))
Average: 0.17061943569953542
list(cumsum_acc(values_ten))
Average: 9.456979988264607e-07
list(cumsum_acc(values_mil))
Average: 0.11057746014014924
其背后的代码(由GrantJ编写,针对Python 3进行了修改):
from timeit import timeit
from itertools import accumulate
from functools import reduce
def bmark(prog, setup, number):
duration = timeit(prog, setup=setup, number=number)
print(prog)
print('Average:', duration / number)
values_ten = list(range(10))
values_mil = list(range(1000000))
from operator import iadd
bmark('reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), \
values_ten, ([], 0))[0]',
setup='from __main__ import iadd, reduce, values_ten', number=1000000)
bmark('reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), \
values_mil, ([], 0))[0]',
setup='from __main__ import iadd, reduce, values_mil', number=10)
bmark('reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), \
values_ten, [0])[1:]',
setup='from __main__ import iadd, reduce, values_ten', number=1000000)
bmark('reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), \
values_mil, [0])[1:]',
setup='from __main__ import iadd, reduce, values_mil', number=10)
def cumsum_rking(iterable):
values = list(iterable)
for pos in range(1, len(values)):
values[pos] += values[pos - 1]
return values
bmark('cumsum_rking(values_ten)',
setup='from __main__ import cumsum_rking, values_ten', number=1000000)
bmark('cumsum_rking(values_mil)',
setup='from __main__ import cumsum_rking, values_mil', number=10)
def cumsum_larsmans(iterable):
total = 0
for value in iterable:
total += value
yield total
bmark('list(cumsum_larsmans(values_ten))',
setup='from __main__ import cumsum_larsmans, values_ten', number=1000000)
bmark('list(cumsum_larsmans(values_mil))',
setup='from __main__ import cumsum_larsmans, values_mil', number=10)
def cumsum_acc(iterable):
return accumulate(iterable)
bmark('list(cumsum_acc(values_ten))',
setup='from __main__ import cumsum_acc, accumulate, values_ten', number=1000000)
bmark('list(cumsum_acc(values_mil))',
setup='from __main__ import cumsum_acc, accumulate, values_mil', number=10)
答案 9 :(得分:0)
从Python 3.8
开始并引入assignment expressions (PEP 572)(:=
运算符),我们可以在列表推导中使用和增加变量:
total = 0
[total := total + x for x in [1, 2, 3 ,4, 5]]
# [1, 3, 6, 10, 15]
此:
total
初始化为0
,这象征着累加和total
)增加total := total + x
x
映射到total
的新值