我必须加密,存储然后解密大文件。这样做的最佳方式是什么?我听说RSA加密很昂贵,建议使用RSA加密AES密钥,然后使用AES密钥加密大文件。任何带有示例的建议都会很棒。
答案 0 :(得分:14)
一个有机体的大小是另一个娇小的,虽然我们看到它时都知道很贵。眨眼,眨眼。
尝试在您的环境中对以下内容进行基准测试,并了解您所处的位置:
EDIT 2/13/2012:代码已经更新,因为我已经(不知不觉)变得更聪明,并且还注意到了一些已经悄悄进入的'cut'n'paste错误.Mea culpa。
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
...
// Rfc2898DeriveBytes constants:
public readonly byte[] salt = new byte[] { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // Must be at least eight bytes. MAKE THIS SALTIER!
public const int iterations = 1042; // Recommendation is >= 1000.
/// <summary>Decrypt a file.</summary>
/// <remarks>NB: "Padding is invalid and cannot be removed." is the Universal CryptoServices error. Make sure the password, salt and iterations are correct before getting nervous.</remarks>
/// <param name="sourceFilename">The full path and name of the file to be decrypted.</param>
/// <param name="destinationFilename">The full path and name of the file to be output.</param>
/// <param name="password">The password for the decryption.</param>
/// <param name="salt">The salt to be applied to the password.</param>
/// <param name="iterations">The number of iterations Rfc2898DeriveBytes should use before generating the key and initialization vector for the decryption.</param>
public void DecryptFile(string sourceFilename, string destinationFilename, string password, byte[] salt, int iterations)
{
AesManaged aes = new AesManaged();
aes.BlockSize = aes.LegalBlockSizes[0].MaxSize;
aes.KeySize = aes.LegalKeySizes[0].MaxSize;
// NB: Rfc2898DeriveBytes initialization and subsequent calls to GetBytes must be eactly the same, including order, on both the encryption and decryption sides.
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(password, salt, iterations);
aes.Key = key.GetBytes(aes.KeySize / 8);
aes.IV = key.GetBytes(aes.BlockSize / 8);
aes.Mode = CipherMode.CBC;
ICryptoTransform transform = aes.CreateDecryptor(aes.Key, aes.IV);
using (FileStream destination = new FileStream(destinationFilename, FileMode.CreateNew, FileAccess.Write, FileShare.None))
{
using (CryptoStream cryptoStream = new CryptoStream(destination, transform, CryptoStreamMode.Write))
{
try
{
using (FileStream source = new FileStream(sourceFilename, FileMode.Open, FileAccess.Read, FileShare.Read))
{
source.CopyTo(cryptoStream);
}
}
catch (CryptographicException exception)
{
if (exception.Message == "Padding is invalid and cannot be removed.")
throw new ApplicationException("Universal Microsoft Cryptographic Exception (Not to be believed!)", exception);
else
throw;
}
}
}
}
/// <summary>Encrypt a file.</summary>
/// <param name="sourceFilename">The full path and name of the file to be encrypted.</param>
/// <param name="destinationFilename">The full path and name of the file to be output.</param>
/// <param name="password">The password for the encryption.</param>
/// <param name="salt">The salt to be applied to the password.</param>
/// <param name="iterations">The number of iterations Rfc2898DeriveBytes should use before generating the key and initialization vector for the decryption.</param>
public void EncryptFile(string sourceFilename, string destinationFilename, string password, byte[] salt, int iterations)
{
AesManaged aes = new AesManaged();
aes.BlockSize = aes.LegalBlockSizes[0].MaxSize;
aes.KeySize = aes.LegalKeySizes[0].MaxSize;
// NB: Rfc2898DeriveBytes initialization and subsequent calls to GetBytes must be eactly the same, including order, on both the encryption and decryption sides.
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(password, salt, iterations);
aes.Key = key.GetBytes(aes.KeySize / 8);
aes.IV = key.GetBytes(aes.BlockSize / 8);
aes.Mode = CipherMode.CBC;
ICryptoTransform transform = aes.CreateEncryptor(aes.Key, aes.IV);
using (FileStream destination = new FileStream(destinationFilename, FileMode.CreateNew, FileAccess.Write, FileShare.None))
{
using (CryptoStream cryptoStream = new CryptoStream(destination, transform, CryptoStreamMode.Write))
{
using (FileStream source = new FileStream(sourceFilename, FileMode.Open, FileAccess.Read, FileShare.Read))
{
source.CopyTo(cryptoStream);
}
}
}
}
答案 1 :(得分:13)
这可能会有所帮助
/// Encrypts a file using Rijndael algorithm.
///</summary>
///<param name="inputFile"></param>
///<param name="outputFile"></param>
private void EncryptFile(string inputFile, string outputFile)
{
try
{
string password = @"myKey123"; // Your Key Here
UnicodeEncoding UE = new UnicodeEncoding();
byte[] key = UE.GetBytes(password);
string cryptFile = outputFile;
FileStream fsCrypt = new FileStream(cryptFile, FileMode.Create);
RijndaelManaged RMCrypto = new RijndaelManaged();
CryptoStream cs = new CryptoStream(fsCrypt,
RMCrypto.CreateEncryptor(key, key),
CryptoStreamMode.Write);
FileStream fsIn = new FileStream(inputFile, FileMode.Open);
int data;
while ((data = fsIn.ReadByte()) != -1)
cs.WriteByte((byte)data);
fsIn.Close();
cs.Close();
fsCrypt.Close();
}
catch
{
MessageBox.Show("Encryption failed!", "Error");
}
}
///
/// Decrypts a file using Rijndael algorithm.
///</summary>
///<param name="inputFile"></param>
///<param name="outputFile"></param>
private void DecryptFile(string inputFile, string outputFile)
{
{
string password = @"myKey123"; // Your Key Here
UnicodeEncoding UE = new UnicodeEncoding();
byte[] key = UE.GetBytes(password);
FileStream fsCrypt = new FileStream(inputFile, FileMode.Open);
RijndaelManaged RMCrypto = new RijndaelManaged();
CryptoStream cs = new CryptoStream(fsCrypt,
RMCrypto.CreateDecryptor(key, key),
CryptoStreamMode.Read);
FileStream fsOut = new FileStream(outputFile, FileMode.Create);
int data;
while ((data = cs.ReadByte()) != -1)
fsOut.WriteByte((byte)data);
fsOut.Close();
cs.Close();
fsCrypt.Close();
}
}
源: http://www.codeproject.com/Articles/26085/File-Encryption-and-Decryption-in-C
答案 2 :(得分:10)
通常,当数据在一台计算机(如服务器)上加密,然后由另一台计算机(客户端)解密时,会使用您所描述的策略。服务器将使用对称密钥加密(用于性能)使用新生成的密钥加密数据,并使用公钥(匹配客户端的私钥)加密此对称密钥。服务器向客户端发送加密数据和加密对称密钥。客户端可以用它的私钥解密对称密钥,然后使用这个对称密钥来解密数据。 如果您正在加密和解密同一台计算机上的数据,那么使用RSA和AES可能没有意义,因为您不会尝试将加密密钥传递给另一台计算机。
答案 3 :(得分:4)
就像您听到的非对称加密技术(如RSA)要慢得多,比对称加密技术(例如AES)慢,但确实具有优势(更简单的密钥管理,例如单个私钥保护)。 / p>
密钥(双关语)是利用两者的优点(非对称私钥和对称速度),而忽略了对方的不便(许多密钥和慢速)。
您可以通过每个文件使用一次RSA(没有巨大的性能影响)来加密用于加密(更快)大文件的(对称)密钥。对称密钥的* 包装允许您只管理一个私钥。
这是我旧的(但仍然是真的)blog post的链接,它提供了一个使用C#和.NET框架(Mono的Microsoft)执行此操作的示例。
答案 4 :(得分:0)
RSA
真正的非对称加密(RSA,ECC等)比对称(AES,ChaCha20等)要慢。 RSA和其他协议非常适合保护随机对称密钥(或建立密钥)。 AES和其他协议非常适合与完整性检查(HMAC)一起使用的高效加密。
重要的是,成熟的对称密码没有任何已知的理论弱点。除非您的攻击者拥有对称密钥,否则加密不会被破坏。当前,所有成熟的非对称密码术(RSA,ECC)都基于数学特性,很容易被未来的Quantum Computer(如果有)破解。
此外,公钥/私钥的处理也成为问题。对于人类来说,记住密码很简单-他们的大脑无法被黑客入侵。使用公钥/私钥,它们需要存储在某个地方。特别是私钥是敏感的。计算机具有TDM组件,这些组件可以创建和存储独立于CPU的公用/专用密钥。使用起来非常复杂。
因此请记住,仅在绝对必要的情况下才应使用RSA。
AES
这是我最近写的完整版本,它返回包装的流光,因此您可以根据需要使用它。
此外,此方法从随机生成器而不是密码摘要生成器生成IV。这是最佳做法,例如7z会这样做-请参见https://crypto.stackexchange.com/questions/61945/is-it-ok-to-transmit-an-iv-as-a-custom-http-header。 IV包含在输出的标题中。
用法:
void Save()
{
var encryptedFilePath = Directory.GetCurrentDirectory() + "\\data.bin.aes";
using(var fileStream = File.Create(encryptedFilePath))
{
using (var cryptoStream = Security.FileEncryptor.CreateEncryptor(fileStream, passwordHere))
{
var formatter = new BinaryFormatter();
formatter.Serialize(cryptoStream, myObject);
cryptoStream.Flush();
}
}
}
void Load()
{
var encryptedFilePath = Directory.GetCurrentDirectory() + "\\data.bin.aes";
using(var fileStream = File.Open(encryptedFilePath, FileMode.Open))
{
using (var cryptoStream = Security.FileEncryptor.CreateDecryptor(fileStream, passwordHere))
{
var formatter = new BinaryFormatter();
var myObject = (myObjectType)formatter.Deserialize(cryptoStream);
}
}
}
实用程序:
using System.IO;
using System.Security.Cryptography;
using System;
namespace Security
{
class FileEncryptor
{
public static Stream CreateEncryptor(Stream source, string password)
{
byte[] SaltBytes = new byte[16];
RandomNumberGenerator.Fill(SaltBytes); //RandomNumberGenerator is used for .Net Core 3
AesManaged aes = new AesManaged();
aes.BlockSize = aes.LegalBlockSizes[0].MaxSize;
aes.KeySize = aes.LegalKeySizes[0].MaxSize;
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(password, SaltBytes, iterations);
aes.Key = key.GetBytes(aes.KeySize / 8);
byte[] IVBytes = new byte[aes.BlockSize / 8];
RandomNumberGenerator.Fill(IVBytes); //RandomNumberGenerator is used for .Net Core 3
aes.IV = IVBytes;
aes.Mode = CipherMode.CBC;
ICryptoTransform transform = aes.CreateEncryptor(aes.Key, aes.IV);
//Store/Send the Salt and IV - this can be shared. It's more important that it's very random, than being private.
source.WriteByte((byte)SaltBytes.Length);
source.Write(SaltBytes, 0, SaltBytes.Length);
source.WriteByte((byte)IVBytes.Length);
source.Write(IVBytes, 0, IVBytes.Length);
source.Flush();
var cryptoStream = new CryptoStream(source, transform, CryptoStreamMode.Write);
return cryptoStream;
}
public static Stream CreateDecryptor(Stream source, string password)
{
var ArrayLength = source.ReadByte();
if (ArrayLength == -1) throw new Exception("Salt length not found");
byte[] SaltBytes = new byte[ArrayLength];
var readBytes = source.Read(SaltBytes, 0, ArrayLength);
if (readBytes != ArrayLength) throw new Exception("No support for multiple reads");
ArrayLength = source.ReadByte();
if (ArrayLength == -1) throw new Exception("Salt length not found");
byte[] IVBytes = new byte[ArrayLength];
readBytes = source.Read(IVBytes, 0, ArrayLength);
if (readBytes != ArrayLength) throw new Exception("No support for multiple reads");
AesManaged aes = new AesManaged();
aes.BlockSize = aes.LegalBlockSizes[0].MaxSize;
aes.KeySize = aes.LegalKeySizes[0].MaxSize;
aes.IV = IVBytes;
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(password, SaltBytes, iterations);
aes.Key = key.GetBytes(aes.KeySize / 8);
aes.Mode = CipherMode.CBC;
ICryptoTransform transform = aes.CreateDecryptor(aes.Key, aes.IV);
var cryptoStream = new CryptoStream(source, transform, CryptoStreamMode.Read);
return cryptoStream;
}
public const int iterations = 1042; // Recommendation is >= 1000.
}
}