我正在编写一个在x86-32和x86-64 Linux中使用libbfd
和libopcodes
来执行反汇编的工具。问题是,虽然我能够获得libopcodes进行反汇编,但我无法获得任何指令信息。出于演示的目的,我做了一个最小的例子来重现我的问题。该程序应将自己从入口点拆分为第一个RET
/ RETQ
。
代码有点被全局修改,为简洁起见省略了错误检查等,但应该清楚地说明问题。
#include <bfd.h>
#include <dis-asm.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <string.h>
#include <ctype.h>
#include <limits.h>
#include <libiberty.h>
/*
* Holds state for BFD and libopcodes.
*/
bfd * abfd = NULL;
disassemble_info dinfo = {0};
/*
* Temporary hack to signal when disassembling should stop.
*/
static bool stop_disassembling = FALSE;
/*
* Gets path to currently running executable.
*/
bool get_target_path(char * target_path, size_t size)
{
char * path;
ssize_t len;
pid_t pid = getpid();
sprintf(target_path, "/proc/%d/exe", (int)pid );
path = strdup(target_path);
len = readlink(path, target_path, size);
target_path[len] = '\0';
free(path);
return TRUE;
}
/*
* libopcodes appends spaces on the end of some instructions so for
* comparisons, we want to strip those first.
*/
void strip_tail(char * str, unsigned int size)
{
int i;
for(i = 0; i < size; i++) {
if(!isgraph(str[i])) {
str[i] = '\0';
break;
}
}
}
/*
* Checks whether the current instruction will cause the control flow to not
* proceed to the linearly subsequent instruction (e.g. ret, jmp, etc.)
*/
bool breaks_control_flow(char * str)
{
if(abfd->arch_info->bits_per_address == 64) {
if(strcmp(str, "retq") == 0) {
return TRUE;
}
} else {
if(strcmp(str, "ret") == 0) {
return TRUE;
}
}
return FALSE;
}
/*
* Used as a callback for libopcodes so we can do something useful with the
* disassembly. Currently this just outputs to stdout.
*/
int custom_fprintf(void * stream, const char * format, ...)
{
/* silly amount */
char str[128] = {0};
int rv;
va_list args;
va_start(args, format);
rv = vsnprintf(str, ARRAY_SIZE(str) - 1, format, args);
va_end(args);
puts(str);
strip_tail(str, ARRAY_SIZE(str));
if(breaks_control_flow(str)) {
puts("Stopped disassembly");
stop_disassembling = TRUE;
}
if(dinfo.insn_info_valid) {
switch(dinfo.insn_type) {
case dis_noninsn:
printf("not an instruction\n");
break;
case dis_nonbranch:
printf("not a branch\n");
break;
case dis_branch:
printf("is a branch\n");
break;
case dis_condbranch:
printf("is a conditional branch\n");
break;
case dis_jsr:
printf("jump to subroutine\n");
break;
case dis_condjsr:
printf("conditional jump to subroutine\n");
break;
case dis_dref:
printf("data reference in instruction\n");
break;
case dis_dref2:
printf("two data references in instruction\n");
break;
default:
printf("not enumerated\n");
break;
}
} else {
printf("insn_info not valid\n");
}
return rv;
}
/*
* Initialises libopcodes disassembler and returns an instance of it.
*/
disassembler_ftype init_disasm(bfd * abfd, disassemble_info * dinfo)
{
/* Override the stream the disassembler outputs to */
init_disassemble_info(dinfo, NULL, custom_fprintf);
dinfo->flavour = bfd_get_flavour(abfd);
dinfo->arch = bfd_get_arch(abfd);
dinfo->mach = bfd_get_mach(abfd);
dinfo->endian = abfd->xvec->byteorder;
disassemble_init_for_target(dinfo);
return disassembler(abfd);
}
/*
* Method of locating section from VMA taken from opdis.
*/
typedef struct {
bfd_vma vma;
asection * sec;
} BFD_VMA_SECTION;
/*
* Loads section and fills in dinfo accordingly. Since this function allocates
* memory in dinfo->buffer, callers need to call free once they are finished.
*/
bool load_section(bfd * abfd, disassemble_info * dinfo, asection * s)
{
int size = bfd_section_size(s->owner, s);
unsigned char * buf = xmalloc(size);
if(!bfd_get_section_contents(s->owner, s, buf, 0, size)) {
free(buf);
return FALSE;
}
dinfo->section = s;
dinfo->buffer = buf;
dinfo->buffer_length = size;
dinfo->buffer_vma = bfd_section_vma(s->owner, s);
printf("Allocated %d bytes for %s section\n: 0x%lX", size, s->name,
dinfo->buffer_vma);
return TRUE;
}
/*
* Used to locate section for a vma.
*/
void vma_in_section(bfd * abfd, asection * s, void * data)
{
BFD_VMA_SECTION * req = data;
if(req && req->vma >= s->vma &&
req->vma < (s->vma + bfd_section_size(abfd, s)) ) {
req->sec = s;
}
}
/*
* Locate and load section containing vma.
*/
bool load_section_for_vma(bfd * abfd, disassemble_info * dinfo,
bfd_vma vma)
{
BFD_VMA_SECTION req = {vma, NULL};
bfd_map_over_sections(abfd, vma_in_section, &req);
if(!req.sec) {
return FALSE;
} else {
return load_section(abfd, dinfo, req.sec);
}
}
/*
* Start disassembling from entry point.
*/
bool disassemble_entry(bfd * abfd, disassemble_info * dinfo,
disassembler_ftype disassembler)
{
bfd_vma vma = bfd_get_start_address(abfd);
/* First locate and load the section containing the vma */
if(load_section_for_vma(abfd, dinfo, vma)) {
int size;
/* Keep disassembling until signalled otherwise or error */
while(true) {
dinfo->insn_info_valid = 0;
size = disassembler(vma, dinfo);
printf("Disassembled %d bytes at 0x%lX\n", size, vma);
if(size == 0 || size == -1 || stop_disassembling) {
break;
}
vma += size;
}
free(dinfo->buffer);
return TRUE;
}
return FALSE;
}
int main(void)
{
char target_path[PATH_MAX] = {0};
bfd_init();
/* Get path for the running instance of this program */
get_target_path(target_path, ARRAY_SIZE(target_path));
abfd = bfd_openr(target_path, NULL);
if(abfd != NULL && bfd_check_format(abfd, bfd_object)) {
disassembler_ftype disassembler = init_disasm(abfd, &dinfo);
disassemble_entry(abfd, &dinfo, disassembler);
bfd_close(abfd);
}
return EXIT_SUCCESS;
}
可以使用以下makefile
构建此源代码。要执行成功的链接,需要在本地计算机上安装binutils-dev
包:
all:
gcc -Wall disasm.c -o disasm -lbfd -lopcodes
clean:
rm -f disasm
运行时,输出为:
Allocated 2216 bytes for .text section
: 0x400BF0xor
insn_info not valid
%ebp
insn_info not valid
,
insn_info not valid
%ebp
insn_info not valid
Disassembled 2 bytes at 0x400BF0
mov
insn_info not valid
%rdx
insn_info not valid
,
insn_info not valid
%r9
insn_info not valid
Disassembled 3 bytes at 0x400BF2
pop
insn_info not valid
%rsi
insn_info not valid
Disassembled 1 bytes at 0x400BF5
mov
insn_info not valid
%rsp
insn_info not valid
,
insn_info not valid
%rdx
insn_info not valid
Disassembled 3 bytes at 0x400BF6
and
insn_info not valid
$0xfffffffffffffff0
insn_info not valid
,
insn_info not valid
%rsp
insn_info not valid
Disassembled 4 bytes at 0x400BF9
push
insn_info not valid
%rax
insn_info not valid
Disassembled 1 bytes at 0x400BFD
push
insn_info not valid
%rsp
insn_info not valid
Disassembled 1 bytes at 0x400BFE
mov
insn_info not valid
$0x401450
insn_info not valid
,
insn_info not valid
%r8
insn_info not valid
Disassembled 7 bytes at 0x400BFF
mov
insn_info not valid
$0x4013c0
insn_info not valid
,
insn_info not valid
%rcx
insn_info not valid
Disassembled 7 bytes at 0x400C06
mov
insn_info not valid
$0x4012ce
insn_info not valid
,
insn_info not valid
%rdi
insn_info not valid
Disassembled 7 bytes at 0x400C0D
callq
insn_info not valid
0x0000000000400ad8
insn_info not valid
Disassembled 5 bytes at 0x400C14
hlt
insn_info not valid
Disassembled 1 bytes at 0x400C19
nop
insn_info not valid
Disassembled 1 bytes at 0x400C1A
nop
insn_info not valid
Disassembled 1 bytes at 0x400C1B
sub
insn_info not valid
$0x8
insn_info not valid
,
insn_info not valid
%rsp
insn_info not valid
Disassembled 4 bytes at 0x400C1C
mov
insn_info not valid
0x2013b9(%rip)
insn_info not valid
,
insn_info not valid
%rax
insn_info not valid
#
insn_info not valid
0x0000000000601fe0
insn_info not valid
Disassembled 7 bytes at 0x400C20
test
insn_info not valid
%rax
insn_info not valid
,
insn_info not valid
%rax
insn_info not valid
Disassembled 3 bytes at 0x400C27
je
insn_info not valid
0x0000000000400c2e
insn_info not valid
Disassembled 2 bytes at 0x400C2A
callq
insn_info not valid
*%rax
insn_info not valid
Disassembled 2 bytes at 0x400C2C
add
insn_info not valid
$0x8
insn_info not valid
,
insn_info not valid
%rsp
insn_info not valid
Disassembled 4 bytes at 0x400C2E
retq
Stopped disassembly
insn_info not valid
Disassembled 1 bytes at 0x400C32
我期望的是能够通过dinfo->insn_type
,target
等读取每条指令的指令信息。这种行为在x86-32和x86-64上都有展示。如果我至少可以确认这两个架构没有实现,那么我可以自己填写这些信息。
答案 0 :(得分:10)
不幸的是,从binutils libopcodes 2.22开始,i386或x86_64上都没有填充insn_type
。唯一广泛支持的架构是MIPS,Sparc和Cell的SPU。从目前的CVS HEAD开始,这仍然是正确的。
很难证明某些东西不存在,但例如,在the Sparc disassembler source中,您可以看到多次出现insn_type
被设置,例如info->insn_type = dis_branch
,而在{{3} }} insn_type
,dis_branch
,dis_nonbranch
等不会出现insn_type
或任何值。{/ p>
检查所有支持opcodes/mips-dis.c
的libopcodes文件:
opcodes/spu-dis.c
opcodes/microblaze-dis.c
opcodes/cris-dis.c
opcodes/sparc-dis.c
opcodes/mmix-dis.c
答案 1 :(得分:3)
仅仅使用这些库这将是一个非常痛苦和艰巨的过程。我想你应该听Necrolis并使用已经做到这一点的库。我过去曾使用Dyninst(即 InstructionAPI + ParseAPI )。他们有很好的文档记录,并且完全你正在尝试做什么。至少,用这个库花一个小时并在手册中编译它们的例子会给你一个应用程序,它可以让你检查每条指令的操作码,每条指令的长度,每条指令的参数数等等。这些是libopcodes不会告诉你也不会处理的东西(它一次解码地址,不保证是指令)。
以下是我从他们的manual中获取的Opdis开发人员的片段(如果你没有,我建议你阅读,那里有许多关于libopcodes
的好东西):
libopcodes库是一个非常可用的反汇编程序,但它有 三个缺点:
- 文档不足,新用户难以理解
- 其功能集仅限于单个地址的反汇编
- 主要用于将反汇编指令打印到流
醇>
除此之外,我认为您可能会被该列表中的第二项蜇伤。也就是说,大多数(所有?)操作码都适合单个地址并且与观察到的输出一致(例如,您获得mov
和pop
以及一些寄存器参数)。但是那些棘手的事情,比如变长指令或没有准确排列在4字节边界的指令呢?你没有做任何事来处理这些事情。
libopcodes生成的反汇编是一系列字符串 用于写入流。没有元数据,所以字符串 必须检查以确定哪些是助记符,哪些是 操作数,以及哪些是分支/跳转/返回指令和 他们的目标是什么。
我猜测Opdis比你的程序更聪明 - 它知道如何以及在流中寻找什么。也许有时它知道它需要在拆卸之前读取两个地址而不是一个地址。从您的代码和libopcodes的描述中,都没有这样做。
祝你好运!请记住阅读该手册,并考虑改为使用libopdis
!
答案 2 :(得分:0)
Libopcodes将反汇编指令打印到您的custom_printf函数拦截的流中。您的错误是您假设每次反汇编一条指令时都会调用一次custom_printf,但是,更频繁地调用它,特别是打印每个助记符,操作数,地址或分隔符。
因此,二进制文件的反汇编是
xor %ebp, %ebp
mov %rdx, %r9
pop %rsi
mov %rsp, %rdx
and $0xfffffffffffffff0, %rsp
push %rax
push %rsp
mov $0x401450,%r8
...