我有2个阵列(G和G_)。它们具有相同的形状和大小,我想对它们进行卷积。我找到了numpy.convolve和fftconvolve。 我的代码就像:
foldedX = getFoldGradientsFFT(G, G_)
foldedY = getFoldGradientsNumpy(G, G_)
def getFoldGradientsFFT(G, G_):
# convolve via scipy fast fourier transform
X =signal.fftconvolve(G,G_, "same)
X*=255.0/numpy.max(X);
return X
def getFoldGradientsNumpy(G, G_):
# convolve via numpy.convolve
Y = ndimage.convolve(G, G_)
Y*=255.0/numpy.max(Y);
return Y
但结果并不相同。 结果如下: Numpy.concolve()
[ 11.60287582 3.28262652 18.80395211 52.75829556 99.61675945
147.74124258 187.66178244 215.06160439 234.1907606 229.04221552]
scipy.signal.fftconvolve:
[ -4.88130620e-15 6.74371119e-02 4.91875539e+00 1.94250997e+01
3.88227012e+01 6.70322921e+01 9.78460423e+01 1.08486302e+02
1.17267015e+02 1.15691562e+02]
我认为结果应该是相同的,即使这两个函数使用不同的过程进行卷积?!
G = array([[1,2],[3,4]])
G_ = array([[5,6],[7,8]])
代码
def getFoldGradientsFFT(G, G_):
X =signal.fftconvolve(G,G_,"same")
X=X.astype("int")
X*=255.0/np.max(X);
return X
def getFoldGradientsNumpy(G, G_):
# convolve via convolve
old_shape = G.shape
G = np.reshape(G, G.size)
G_ = np.reshape(G_, G.size)
Y = np.convolve(G, G_, "same")
Y = np.reshape(Y,old_shape)
Y = Y.astype("int")
Y*=255.0/np.max(Y);
return Y
def getFoldGradientsNDImage(G, G_):
Y = ndimage.convolve(G, G_)
Y = Y.astype("int")
Y *= 255.0/np.max(Y)
return Y
结果:
getFoldGradientsFFT
[[ 21 68]
[ 93 255]]
getFoldGradientsNumpy
[[ 66 142]
[250 255]]
getFoldGradientsNDImage
[[147 181]
[220 255]]
答案 0 :(得分:5)
numpy.convolve用于一维数据。
以下代码比较了signal.convolve,signal.fftconvolve和ndimage.convolve的结果。
对于ndimage.convolve,我们需要将mode参数设置为“constant”,当N为偶数时,将origin参数设置为-1,当N为奇数时,将参数设置为0.
from scipy import signal
from scipy import ndimage
import numpy as np
np.random.seed(1)
for N in xrange(2, 20):
a = np.random.randint(0, 10, size=(N, N))
b = np.random.randint(0, 10, size=(N, N))
r1 = signal.convolve(a, b, mode="same")
r2 = signal.fftconvolve(a, b, mode="same")
r3 = ndimage.convolve(a, b, mode="constant", origin=-1 if N%2==0 else 0)
print "N=", N
print np.allclose(r1, r2)
print np.allclose(r2, r3)
答案 1 :(得分:3)
getFoldGradientsNumpy
正在使用scipy.ndimage.convolve
。这是多维卷积,与scipy.convolve
不一样。
对我来说,当卷绕两个一维数组时,scipy.convolve
,scipy.signal.convolve
和scipy.signal.fftconvolve
都会返回相同的答案。