答案 0 :(得分:18)
你可以使用numpy.random.shuffle
import numpy as np
N = 4601
data = np.arange(N*58).reshape(-1, 58)
np.random.shuffle(data)
a = data[:int(N*0.6)]
b = data[int(N*0.6):int(N*0.8)]
c = data[int(N*0.8):]
答案 1 :(得分:7)
对于HYRY的答案的补充,如果你想要使用相同的第一维维度来调整几个数组x,y,z:x.shape[0] == y.shape[0] == z.shape[0] == n_samples
。
你可以这样做:
rng = np.random.RandomState(42) # reproducible results with a fixed seed
indices = np.arange(n_samples)
rng.shuffle(indices)
x_shuffled = x[indices]
y_shuffled = y[indices]
z_shuffled = z[indices]
然后按照HYRY的回答进行每个混洗数组的拆分。
答案 2 :(得分:3)
如果要随机选择行,可以使用标准Python库中的random.sample
:
import random
population = range(4601) # Your number of rows
choice = random.sample(population, k) # k being the number of samples you require
random.sample
样本没有替换,因此您无需担心在choice
中结束的重复行。给定一个名为matrix
的numpy数组,您可以通过切片选择行,如下所示:matrix[choice]
。
当然,k
可以等于总体中元素的总数,然后choice
将包含行的索引的随机排序。然后,您可以根据需要对choice
进行分区,如果这就是您所需要的。
答案 3 :(得分:2)
由于你需要它用于机器学习,这是我写的一个方法:
import numpy as np
def split_random(matrix, percent_train=70, percent_test=15):
"""
Splits matrix data into randomly ordered sets
grouped by provided percentages.
Usage:
rows = 100
columns = 2
matrix = np.random.rand(rows, columns)
training, testing, validation = \
split_random(matrix, percent_train=80, percent_test=10)
percent_validation 10
training (80, 2)
testing (10, 2)
validation (10, 2)
Returns:
- training_data: percentage_train e.g. 70%
- testing_data: percent_test e.g. 15%
- validation_data: reminder from 100% e.g. 15%
Created by Uki D. Lucas on Feb. 4, 2017
"""
percent_validation = 100 - percent_train - percent_test
if percent_validation < 0:
print("Make sure that the provided sum of " + \
"training and testing percentages is equal, " + \
"or less than 100%.")
percent_validation = 0
else:
print("percent_validation", percent_validation)
#print(matrix)
rows = matrix.shape[0]
np.random.shuffle(matrix)
end_training = int(rows*percent_train/100)
end_testing = end_training + int((rows * percent_test/100))
training = matrix[:end_training]
testing = matrix[end_training:end_testing]
validation = matrix[end_testing:]
return training, testing, validation
# TEST:
rows = 100
columns = 2
matrix = np.random.rand(rows, columns)
training, testing, validation = split_random(matrix, percent_train=80, percent_test=10)
print("training",training.shape)
print("testing",testing.shape)
print("validation",validation.shape)
print(split_random.__doc__)