我正在尝试使用Python来检索实时音频输入的主要频率。目前我正在尝试使用我的笔记本电脑内置麦克风的音频流,但在测试以下代码时,我的结果非常糟糕。
# Read from Mic Input and find the freq's
import pyaudio
import numpy as np
import bge
import wave
chunk = 2048
# use a Blackman window
window = np.blackman(chunk)
# open stream
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 1920
p = pyaudio.PyAudio()
myStream = p.open(format = FORMAT, channels = CHANNELS, rate = RATE, input = True, frames_per_buffer = chunk)
def AnalyseStream(cont):
data = myStream.read(chunk)
# unpack the data and times by the hamming window
indata = np.array(wave.struct.unpack("%dh"%(chunk), data))*window
# Take the fft and square each value
fftData=abs(np.fft.rfft(indata))**2
# find the maximum
which = fftData[1:].argmax() + 1
# use quadratic interpolation around the max
if which != len(fftData)-1:
y0,y1,y2 = np.log(fftData[which-1:which+2:])
x1 = (y2 - y0) * .5 / (2 * y1 - y2 - y0)
# find the frequency and output it
thefreq = (which+x1)*RATE/chunk
print("The freq is %f Hz." % (thefreq))
else:
thefreq = which*RATE/chunk
print("The freq is %f Hz." % (thefreq))
# stream.close()
# p.terminate()
该代码是从this question中蚕食的,它处理波形文件的傅立叶分析。它是在当前的模块化结构中,因为我正在使用Blender Game Environment实现它(因此导入bge位于顶部),但我很确定我的问题在于AnalyseStream模块。
非常感谢您提供的任何建议。
更新:我不时地得到正确的值,但是在不正确的值(< 10Hz)中很少发现它们。那个和程序运行得非常慢。
答案 0 :(得分:6)
你好发现用于实时分析的最大计算FFT变得有点慢。
如果您不使用复杂的波形来查找频率,您可以使用任何基于时域的方法,例如过零,性能会更好。
在去年,我做了一个简单的函数来通过零交叉计算频率。
#Eng Eder de Souza 01/12/2011
#ederwander
from matplotlib.mlab import find
import pyaudio
import numpy as np
import math
chunk = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 44100
RECORD_SECONDS = 20
def Pitch(signal):
signal = np.fromstring(signal, 'Int16');
crossing = [math.copysign(1.0, s) for s in signal]
index = find(np.diff(crossing));
f0=round(len(index) *RATE /(2*np.prod(len(signal))))
return f0;
p = pyaudio.PyAudio()
stream = p.open(format = FORMAT,
channels = CHANNELS,
rate = RATE,
input = True,
output = True,
frames_per_buffer = chunk)
for i in range(0, RATE / chunk * RECORD_SECONDS):
data = stream.read(chunk)
Frequency=Pitch(data)
print "%f Frequency" %Frequency
ederwander
答案 1 :(得分:2)
还有函数scipy.signal.lombscargle
计算Lomb-Scargle周期图,自v0.10.0起可用。即使对于不均匀采样的信号,该方法也应该有效。似乎必须减去数据的平均值才能使此方法正常工作,尽管文档中没有提到。
更多信息可以在scipy参考指南中找到:
http://docs.scipy.org/doc/scipy/reference/tutorial/signal.html#lomb-scargle-periodograms-spectral-lombscargle