我有基于LWJGL的Java应用程序。我通过排列在3 x 3网格中的9个顶点缓冲区渲染地形。当摄像机移过某个边界时,9个缓冲区要么更新要么用一组新的地形替换。这一切都很好,除了当一个新的地形块添加9元素阵列时,我的内存增加大约5MB。仅此一项就是预期的。不期望的是前一个地形块占用的5MB内存没有得到清理。
我已经筋疲力尽了我的谷歌,所以我希望有人可以给我一些帮助。我安装并运行了VisualVM。我不明白的是,Windows在大量地形加载和卸载后使用200MB表示我的应用程序。但VisualVM堆转储仅显示12MB。
用于加载地形的游戏循环没有在“main”的高级线程中运行。谁能指出我正确的方向?我会粘贴一些代码,但它太大了我不知道要粘贴哪个位。
while(Game.running) {
time = Sys.getTime();
dt = (double)((time - lastTime))/1000.0;
lastTime = time;
GL11.glClear(GL11.GL_COLOR_BUFFER_BIT | GL11.GL_DEPTH_BUFFER_BIT);
input.pollInput(cam, dt);
cam.update(terrain.getTerrainHeight());
sun.render();
terrain.updateNew(cam.getPosition());
terrain.render();
frameRendering();
//testTriangle();
Display.update();
}
有主循环。问题似乎发生在terrain.updateNew()函数中。
这是:
public void updateNew(Vector3f playerPos)
{
_playerPos.x = playerPos.x;
_playerPos.y = playerPos.y;
_playerPos.z = playerPos.z;
int width = TerrainChunk.CHUNK_WIDTH;
_westernBounds = _chunks[4].getOrigin().x + 0;
_easternBounds = _chunks[4].getOrigin().x + width - 0;
_northernBounds = _chunks[4].getOrigin().z + 0;
_southernBounds = _chunks[4].getOrigin().z + width - 0;
if(_playerPos.x < _westernBounds && !_needUpdate)
{
_needUpdate = true;
_inWestBounds = true;
}
if(_playerPos.x > _easternBounds && !_needUpdate)
{
_needUpdate = true;
_inEastBounds = true;
}
if(_playerPos.z < _northernBounds && !_needUpdate)
{
_needUpdate = true;
_inNorthBounds = true;
}
if(_playerPos.z > _southernBounds && !_needUpdate)
{
_needUpdate = true;
_inSouthBounds = true;
}
if(_needUpdate)
{
long key = 0;
long key1 = 0;
long key2 = 0;
int[] coords = new int[2];
HashMap<Integer, Long> needed = new HashMap<Integer, Long>();
coords = calculateChunkCoords(0);
key1 = coords[0];
key2 = coords[1];
key = key1 << 32 | key2;
needed.put(0, key);
coords = calculateChunkCoords(1);
key1 = coords[0];
key2 = coords[1];
key = key1 << 32 | key2;
needed.put(1, key);
coords = calculateChunkCoords(2);
key1 = coords[0];
key2 = coords[1];
key = key1 << 32 | key2;
needed.put(2, key);
coords = calculateChunkCoords(3);
key1 = coords[0];
key2 = coords[1];
key = key1 << 32 | key2;
needed.put(3, key);
coords = calculateChunkCoords(4);
key1 = coords[0];
key2 = coords[1];
key = key1 << 32 | key2;
needed.put(4, key);
coords = calculateChunkCoords(5);
key1 = coords[0];
key2 = coords[1];
key = key1 << 32 | key2;
needed.put(5, key);
coords = calculateChunkCoords(6);
key1 = coords[0];
key2 = coords[1];
key = key1 << 32 | key2;
needed.put(6, key);
coords = calculateChunkCoords(7);
key1 = coords[0];
key2 = coords[1];
key = key1 << 32 | key2;
needed.put(7, key);
coords = calculateChunkCoords(8);
key1 = coords[0];
key2 = coords[1];
key = key1 << 32 | key2;
needed.put(8, key);
// copy the chunks we have into a searchable has map
HashMap<Long, TerrainChunk> have = new HashMap<Long, TerrainChunk>();
key1 = _chunks[0]._origin[0];
key2 = _chunks[0]._origin[1];
key = key1 << 32 | key2;
have.put(key, new TerrainChunk(_chunks[0], _chunks[0]._color));
key1 = _chunks[1]._origin[0];
key2 = _chunks[1]._origin[1];
key = key1 << 32 | key2;
have.put(key, new TerrainChunk(_chunks[1], _chunks[1]._color));
key1 = _chunks[2]._origin[0];
key2 = _chunks[2]._origin[1];
key = key1 << 32 | key2;
have.put(key, new TerrainChunk(_chunks[2], _chunks[2]._color));
key1 = _chunks[3]._origin[0];
key2 = _chunks[3]._origin[1];
key = key1 << 32 | key2;
have.put(key, new TerrainChunk(_chunks[3], _chunks[3]._color));
key1 = _chunks[4]._origin[0];
key2 = _chunks[4]._origin[1];
key = key1 << 32 | key2;
have.put(key, new TerrainChunk(_chunks[4], _chunks[4]._color));
key1 = _chunks[5]._origin[0];
key2 = _chunks[5]._origin[1];
key = key1 << 32 | key2;
have.put(key, new TerrainChunk(_chunks[5], _chunks[5]._color));
key1 = _chunks[6]._origin[0];
key2 = _chunks[6]._origin[1];
key = key1 << 32 | key2;
have.put(key, new TerrainChunk(_chunks[6], _chunks[6]._color));
key1 = _chunks[7]._origin[0];
key2 = _chunks[7]._origin[1];
key = key1 << 32 | key2;
have.put(key, new TerrainChunk(_chunks[7], _chunks[7]._color));
key1 = _chunks[8]._origin[0];
key2 = _chunks[8]._origin[1];
key = key1 << 32 | key2;
have.put(key, new TerrainChunk(_chunks[8], _chunks[8]._color));
Set<Entry<Integer, Long>> set = needed.entrySet();
Iterator<Entry<Integer, Long>> i = set.iterator();
// Garbage cleanup?
while(i.hasNext())
{
Map.Entry<Integer, Long> me = i.next();
if(have.containsKey(me.getValue()))
{
_chunks[me.getKey()] = null;
_chunks[me.getKey()] = new TerrainChunk(have.get(me.getValue()), getColor(me.getKey()));
} else {
_chunks[me.getKey()].destroy();
_chunks[me.getKey()] = null;
_chunks[me.getKey()] = new TerrainChunk(calculateChunkCoords(me.getKey()), getColor(me.getKey()), this);
}
}
_needUpdate = false;
have.clear();
needed.clear();
have = null;
needed = null;
}
}
这是创建顶点缓冲区的函数:
private boolean createVertexBuffer()
{
_vboVertexAttribues = ARBVertexBufferObject.glGenBuffersARB();
_vboVertexIndices = ARBVertexBufferObject.glGenBuffersARB();
//_vboVertexTexture = ARBVertexBufferObject.glGenBuffersARB();
ARBVertexBufferObject.glBindBufferARB(
ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB,
_vboVertexAttribues
);
ARBVertexBufferObject.glBufferDataARB(
ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB,
(VERTEX_SIZE * VERTEX_COUNT),
ARBVertexBufferObject.GL_STATIC_DRAW_ARB
);
ByteBuffer vertextPositionAttributes = ARBVertexBufferObject.glMapBufferARB(
ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB,
ARBVertexBufferObject.GL_WRITE_ONLY_ARB,
(VERTEX_SIZE * VERTEX_COUNT),
null
);
for(int i = 0; i < VERTEX_COUNT; i++)
{
vertextPositionAttributes.putDouble(_vPos[i].x);
vertextPositionAttributes.putDouble(_vPos[i].y);
vertextPositionAttributes.putDouble(_vPos[i].z);
vertextPositionAttributes.putDouble(_vNorm[i].x);
vertextPositionAttributes.putDouble(_vNorm[i].y);
vertextPositionAttributes.putDouble(_vNorm[i].z);
vertextPositionAttributes.putFloat(_color.x);
vertextPositionAttributes.putFloat(_color.y);
vertextPositionAttributes.putFloat(_color.z);
vertextPositionAttributes.putFloat(1.0f);
}
vertextPositionAttributes.flip();
ARBVertexBufferObject.glUnmapBufferARB(ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB);
ARBVertexBufferObject.glBindBufferARB(ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB, 0);
vertextPositionAttributes.clear();
vertextPositionAttributes = null;
// TEXTURE COORDS
/*ARBVertexBufferObject.glBindBufferARB(
ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB,
_vboVertexTexture
);
ARBVertexBufferObject.glBufferDataARB(
ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB,
(TEXTURE_SIZE * VERTEX_COUNT),
ARBVertexBufferObject.GL_STATIC_DRAW_ARB
);
ByteBuffer vertexTextureCoords = ARBVertexBufferObject.glMapBufferARB(
ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB,
ARBVertexBufferObject.GL_WRITE_ONLY_ARB,
(TEXTURE_SIZE * VERTEX_COUNT),
null
);
for(int i = 0; i < VERTEX_COUNT; i++)
{
vertexTextureCoords.putFloat(_vTex[i].x);
vertexTextureCoords.putFloat(_vTex[i].y);
}
vertexTextureCoords.flip();
ARBVertexBufferObject.glUnmapBufferARB(ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB);
ARBVertexBufferObject.glBindBufferARB(ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB, 0);*/
ARBVertexBufferObject.glBindBufferARB(
ARBVertexBufferObject.GL_ELEMENT_ARRAY_BUFFER_ARB,
_vboVertexIndices
);
ARBVertexBufferObject.glBufferDataARB(
ARBVertexBufferObject.GL_ELEMENT_ARRAY_BUFFER_ARB,
(INDEX_SIZE * INDEX_COUNT),
ARBVertexBufferObject.GL_STATIC_DRAW_ARB
);
ByteBuffer vertexIndices = ARBVertexBufferObject.glMapBufferARB(
ARBVertexBufferObject.GL_ELEMENT_ARRAY_BUFFER_ARB,
ARBVertexBufferObject.GL_WRITE_ONLY_ARB,
(INDEX_SIZE * INDEX_COUNT),
null
);
for(int i = 0; i < _nIndices.length; i++)
{
vertexIndices.putInt(_nIndices[i]);
}
vertexIndices.flip();
ARBVertexBufferObject.glUnmapBufferARB(ARBVertexBufferObject.GL_ELEMENT_ARRAY_BUFFER_ARB);
ARBVertexBufferObject.glBindBufferARB(ARBVertexBufferObject.GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
// Cleanup our crap
_fXs = null;
_fYs = null;
_fZs = null;
_vPos = null;
_vNorm = null;
_color = null;
_nIndices = null;
_vTex = null;
vertexIndices.clear();
vertexIndices = null;
return true;
}
这是渲染功能: public void render() {
GL11.glEnableClientState(GL11.GL_VERTEX_ARRAY);
GL11.glEnableClientState(GL11.GL_NORMAL_ARRAY);
GL11.glEnableClientState(GL11.GL_COLOR_ARRAY);
ARBVertexBufferObject.glBindBufferARB(
ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB,
_vboVertexAttribues
);
ARBVertexBufferObject.glBindBufferARB(
ARBVertexBufferObject.GL_ELEMENT_ARRAY_BUFFER_ARB,
_vboVertexIndices
);
GL11.glVertexPointer(
3,
GL11.GL_DOUBLE,
VERTEX_SIZE,
0
);
GL11.glNormalPointer(
GL11.GL_DOUBLE,
VERTEX_SIZE,
NORMAL_SIZE
);
GL11.glColorPointer(
4,
GL11.GL_FLOAT,
VERTEX_SIZE,
POSITION_SIZE + NORMAL_SIZE
);
GL11.glDrawElements(
GL11.GL_TRIANGLE_STRIP,
INDEX_COUNT,
GL11.GL_UNSIGNED_INT,
0
);
ARBVertexBufferObject.glBindBufferARB(
ARBVertexBufferObject.GL_ARRAY_BUFFER_ARB,
0
);
ARBVertexBufferObject.glBindBufferARB(
ARBVertexBufferObject.GL_ELEMENT_ARRAY_BUFFER_ARB,
0
);
GL11.glDisableClientState(GL11.GL_VERTEX_ARRAY);
GL11.glDisableClientState(GL11.GL_NORMAL_ARRAY);
GL11.glDisableClientState(GL11.GL_COLOR_ARRAY);
}
提前感谢您的任何帮助或建议。
答案 0 :(得分:4)
我认为它可能是Java VM从操作系统分配内存的方式的一个工件,特别是即使堆缩小也不会释放页面,但要保持堆不得不再次增长。
但就代码中的内存泄漏而言,重要的是VisualVM所说的堆大小。如果那是稳定的,那里就没有泄漏。
您还应该考虑Java VM本身使用大量本机库和其他消耗物理或虚拟内存的东西,这为每个Java进程提供了大致恒定的开销。
(This也可能有所帮助。)
答案 1 :(得分:2)
泄漏可能发生在底层本机库中。似乎LWJGL绑定到本机C库(OpenGL,OpenAL等),我怀疑有用于显示的临时内存缓冲区从未发布过。这将解释为什么VisualVM只显示12 MB(他正在处理的对象),而Windows显示200 MB(由JVM创建的数据,仍然在GC内部和C库中使用的数据)。
您确定使用的是框架吗?
编辑:
我可能会弄错,因为我不熟悉这个特定的库,但是 确实您正在使用本机库进行内存分配\操作。
似乎你做得很好,但我注意到了
ARBBufferObject.glGenBuffersARB
分配你的缓冲区。此方法正在包装C原生,因此直到您调用
ARBBufferObject.glDeleteBuffersARB
或终止此缓冲区将保留在内存中。您应该确定createVertexBuffer()
创建的数据的生命周期,调用它的时间,以及当您和GPU都没有完成此操作时删除缓冲区。
我再一次不知道OpenGl的这一面,所以有可能更有可能帮助你。 您注意到API of ARBBufferObject与C++ Wiki
中讨论的相同答案 2 :(得分:1)
答案很简单:将顶点放在“vertextPositionAttributes”中的缓冲区很可能是一个直接缓冲区,这意味着它存在于GC控制堆之外,并且不可见于JVisualVM。