我正在尝试了解BFS如何使用队列来确定最短路径。假设我有一个网格:
1--2--3
| | |
4--5--6
| | |
7--8--9
|
0
起始点为'9',目标为'0'。
所以...我推动开始...
push 9 {9}
pop 9 {}
push 6 {6}
push 8 {6,8}
pop 6 {8}
push 3 {8,3}
push 5 {8,3,5}
pop 8 {3,5}
push 7 {3,5,7}
pop 3 {5,7}
push 2 {5,7,2}
pop 5 {7,2}
push 4 {7,2,4}
pop 7 {2,5}
found 0
如何从这个混乱中提取最短路径?我不知道这是如何给我提供最短路径的。我在想错了吗?
谢谢!
答案 0 :(得分:5)
为了找到最短路径,每个节点还应该“记住”你在BFS期间如何到达它[哪个顶点导致它发现它。]
在cpp中,对于您的示例,您可以使用map<int,int>
。
简单的例子:
map[9] = -1; //indicationg source
map[6] = 9;
map[8] = 9;
map[3] = 6;
map[7] = 8 ;
...
map[0] = 7;
要获得最短路径,只需按照0到源的路径[当值为-1时]。
答案 1 :(得分:2)
您需要做的是记住每个节点如何到达那里。这涉及向每个节点添加数据成员(如果使用结构或类来表示节点),或者更少侵入性地保留整数或节点指针的并行列表。由于您使用C ++标记了这一点,我假设您正在寻找C ++解决方案。这样的事情有效:
#include <iostream>
#include <queue>
#include <stdexcept>
#include <vector>
struct graph {
graph(size_t nodes)
: m_adjacency_list(nodes) {
}
size_t number_of_nodes() const {
return m_adjacency_list.size();
}
std::vector<size_t> const& neighbours_of(size_t node) const {
return m_adjacency_list.at(node);
}
void add_edge(size_t from, size_t to) {
std::vector<size_t>& al = m_adjacency_list.at(from);
if (to >= m_adjacency_list.size())
throw std::runtime_error("Tried to add edge to non-existant node");
for (size_t i = 0; i < al.size(); ++i) if (al[i] == to) return;
al.push_back(to);
}
private:
std::vector<std::vector<size_t>> m_adjacency_list;
};
int main() {
// generate your grid
graph g(10);
g.add_edge(1, 2);
g.add_edge(1, 4);
g.add_edge(2, 1);
g.add_edge(2, 3);
g.add_edge(2, 5);
g.add_edge(3, 2);
g.add_edge(3, 6);
g.add_edge(4, 1);
g.add_edge(4, 5);
g.add_edge(4, 7);
g.add_edge(5, 2);
g.add_edge(5, 4);
g.add_edge(5, 6);
g.add_edge(5, 8);
g.add_edge(6, 3);
g.add_edge(6, 5);
g.add_edge(6, 9);
g.add_edge(7, 4);
g.add_edge(7, 8);
g.add_edge(7, 0);
g.add_edge(8, 5);
g.add_edge(8, 7);
g.add_edge(8, 9);
g.add_edge(9, 6);
g.add_edge(9, 8);
g.add_edge(0, 7);
// do the bfs
std::vector<size_t> reached_by(g.number_of_nodes(), g.number_of_nodes());
std::queue<size_t> q;
size_t start = 9;
size_t target = 0;
reached_by[start] = start;
q.push(start);
while (!q.empty()) {
size_t node = q.front();
q.pop();
for (size_t i = 0; i < g.neighbours_of(node).size(); ++i) {
size_t candidate = g.neighbours_of(node)[i];
if (reached_by[candidate] == g.number_of_nodes()) {
reached_by[candidate] = node;
if (candidate == target) break;
q.push(candidate);
}
}
}
if (reached_by[target] == g.number_of_nodes())
std::cout<<"No path to "<<target<<" found!"<<std::endl;
else {
std::cout<<"Path to "<<target<<": ";
for (size_t node = target; node != start; node = reached_by[node])
std::cout<<node<<" <- ";
std::cout<<start<<std::endl;
}
}
在此代码中,矢量reach_by用于跟踪每个节点到达哪个节点。找到目标后,您可以使用该向量将路径追溯到起点。
运行此程序的输出是
Path to 0: 0 <- 7 <- 8 <- 9