我已经编写了一个代码,只能骑一次骑士到国际象棋棋盘上的所有方格。这个(下面)代码的问题是,它工作到7x7并且在8x8之后什么都不做。代码是 这里chessBoardSize定义大小(8 => 8x8)
#include<stdio.h>
#include<stdlib.h>
#define chessBoardSize 12
int chessBoard[chessBoardSize][chessBoardSize] = {0};
typedef struct point{
int x, y;
}POINT;
int count=0;
int nextPosition(int x, int y, POINT* array){
int m=0;
/* finds the next possible points for the current
position in the chess board:
like
_ _ _ _ _ _
_ * _ * _ _
* _ _ _ * _
_ _ P _ _ _
* _ _ _ * _
_ * _ * _ _
as above if 'P' is the current (x,y)
* represents the next possible points and
also checks it exists within the chess board
*/
if( (x+2) < chessBoardSize ){
if( (y+1) < chessBoardSize ){
array[m].x = x+2;
array[m++].y = y+1;
}
if( (y-1) >-1 ){
array[m].x = x+2;
array[m++].y = y-1;
}
}
if( (x-2) > -1){
if( (y+1) < chessBoardSize ){
array[m].x = x-2;
array[m++].y = y+1;
}
if( (y-1) >-1 ){
array[m].x = x-2;
array[m++].y = y-1;
}
}
if( (y+2) < chessBoardSize){
if( (x+1) < chessBoardSize ){
array[m].x = x+1;
array[m++].y = y+2;
}
if( (x-1) >-1 ){
array[m].x = x-1;
array[m++].y = y+2;
}
}
if( (y-2) > -1){
if( (x+1) < chessBoardSize ){
array[m].x = x+1;
array[m++].y = y-2;
}
if( (x-1) >-1 ){
array[m].x = x-1;
array[m++].y = y-2;
}
}
return m;
}
void displayAnswer(){
int i, j, k;
printf("\n");
for(i=0; i<chessBoardSize; i++){
for(j=0; j<chessBoardSize; j++)
printf("%d\t",chessBoard[i][j]);
printf("\n\n");
}
}
// recursive function using backtrack method
void knightTravel(int x, int y){
POINT array[8] = {{0, 0}, {0, 0}};
// remainin initialized to zero automatically
volatile int noOfPossiblePoints = nextPosition(x, y, array);
volatile int i;
chessBoard[x][y] = ++count;
// base condition uses count
if( count == chessBoardSize * chessBoardSize ){
displayAnswer();
exit(0);
}
for(i=0; i< noOfPossiblePoints; i++)
if( chessBoard[array[i].x][array[i].y] == 0 )
knightTravel(array[i].x, array[i].y);
chessBoard[x][y] = 0;
count--;
}
int main()
{
knightTravel(0, 0);
printf("No solution exists\n");
return 0;
}
答案 0 :(得分:2)
问题是您使用的方法无法在任何合理的时间内解决8x8或更高版本。你的代码很好,但有4e51可能的动作,所以你的程序将花费大量的时间来寻找一个游览。
在你的程序中,迭代次数如下:
5x5 = 74,301
6x6 = 2,511,583
7x7 = 136,328
对于8x8,你的程序需要做到:
3,926,356,053,343,005,839,641,342,729,308,535,057,127,083,875,101,072迭代。