给定一组字符串(大集合)和输入字符串,您需要有效地找到输入字符串的所有字符。您将使用什么数据结构。使用它,你将如何找到字谜?
我想到的是这些:
使用地图
a)删除所有字母多于/少于输入的字母。
b)将输入字符放在地图
中c)遍历每个字符串的地图,看看是否所有字母都带有计数。
使用尝试
a)将所有具有正确字符数的字符串放入trie。
b)遍历每个分支,如果输入中包含字母,则更深入。
c)如果叶子到达这个词是anagram
有人能找到更好的解决方案吗?
您在上述方法中是否有任何问题?
答案 0 :(得分:5)
从每个单词构建频率图并比较这些地图。
伪代码:
class Word
string word
map<char, int> frequency
Word(string w)
word = w
for char in word
int count = frequency.get(char)
if count == null
count = 0
count++
frequency.put(char, count)
boolean is_anagram_of(that)
return this.frequency == that.frequency
答案 1 :(得分:4)
您可以构建一个哈希映射,其中键被排序(单词),值是一个列表,列出了所有单词,排序,给出相应的键:
private Map<String, List<String>> anagrams = new HashMap<String, List<String>>();
void buildIndex(){
for(String word : words){
String sortedWord = sortWord(word);
if(!anagrams.containsKey(sortedWord)){
anagrams.put(sortedWord, new ArrayList<String>());
}
anagrams.get(sortedWord).add(word);
}
}
然后,您只需查找刚刚构建的hashmap中的已排序单词,您将获得所有字谜的列表。
答案 2 :(得分:0)
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
/*
*Program for Find Anagrams from Given A string of Arrays.
*
*Program's Maximum Time Complexity is O(n) + O(klogk), here k is the length of word.
*
* By removal of Sorting, Program's Complexity is O(n)
* **/
public class FindAnagramsOptimized {
public static void main(String[] args) {
String[] words = { "gOd", "doG", "doll", "llod", "lold", "life",
"sandesh", "101", "011", "110" };
System.out.println(getAnaGram(words));
}
// Space Complexity O(n)
// Time Complexity O(nLogn)
static Set<String> getAnaGram(String[] allWords) {
// Internal Data Structure for Keeping the Values
class OriginalOccurence {
int occurence;
int index;
}
Map<String, OriginalOccurence> mapOfOccurence = new HashMap<>();
int count = 0;
// Loop Time Complexity is O(n)
// Space Complexity O(K+2K), here K is unique words after sorting on a
for (String word : allWords) {
String key = sortedWord(word);
if (key == null) {
continue;
}
if (!mapOfOccurence.containsKey(key)) {
OriginalOccurence original = new OriginalOccurence();
original.index = count;
original.occurence = 1;
mapOfOccurence.put(key, original);
} else {
OriginalOccurence tempVar = mapOfOccurence.get(key);
tempVar.occurence += 1;
mapOfOccurence.put(key, tempVar);
}
count++;
}
Set<String> finalAnagrams = new HashSet<>();
// Loop works in O(K), here K is unique words after sorting on
// characters
for (Map.Entry<String, OriginalOccurence> anaGramedWordList : mapOfOccurence.entrySet()) {
if (anaGramedWordList.getValue().occurence > 1) {
finalAnagrams.add(allWords[anaGramedWordList.getValue().index]);
}
}
return finalAnagrams;
}
// Array Sort works in O(nLogn)
// Customized Sorting for only chracter's works in O(n) time.
private static String sortedWord(String word) {
// int[] asciiArray = new int[word.length()];
int[] asciiArrayOf26 = new int[26];
// char[] lowerCaseCharacterArray = new char[word.length()];
// int characterSequence = 0;
// Ignore Case Logic written in lower level
for (char character : word.toCharArray()) {
if (character >= 97 && character <= 122) {
// asciiArray[characterSequence] = character;
if (asciiArrayOf26[character - 97] != 0) {
asciiArrayOf26[character - 97] += 1;
} else {
asciiArrayOf26[character - 97] = 1;
}
} else if (character >= 65 && character <= 90) {
// asciiArray[characterSequence] = character + 32;
if (asciiArrayOf26[character + 32 - 97] != 0) {
asciiArrayOf26[character + 32 - 97] += 1;
} else {
asciiArrayOf26[character + 32 - 97] = 1;
}
} else {
return null;
}
// lowerCaseCharacterArray[characterSequence] = (char)
// asciiArray[characterSequence];
// characterSequence++;
}
// Arrays.sort(lowerCaseCharacterArray);
StringBuilder sortedWord = new StringBuilder();
int asciiToIndex = 0;
// This Logic uses for reading the occurrences from array and copying
// back into the character array
for (int asciiValueOfCharacter : asciiArrayOf26) {
if (asciiValueOfCharacter != 0) {
if (asciiValueOfCharacter == 1) {
sortedWord.append((char) (asciiToIndex + 97));
} else {
for (int i = 0; i < asciiValueOfCharacter; i++) {
sortedWord.append((char) (asciiToIndex + 97));
}
}
}
asciiToIndex++;
}
// return new String(lowerCaseCharacterArray);
return sortedWord.toString();
}
}