HTML5:从画布弧获取单击位置

时间:2012-01-19 20:12:22

标签: html5 canvas click position geometric-arc

请参阅此jsFiddle帖子了解有效的弧线图;感谢Simon Sarris在我之前的问题中提供的解决方法。

我正在使用KineticJS插件来创建形状并使用事件处理程序。假设你点击弧上的某个地方并且弧知道你点击的位置(xy),那么这2个坐标如何用于确定百分比?

单击任意位置时,总百分比始终为100%。

外接

为了简化这一点,我可以做些什么(xy)虚拟弯曲对象,以便x从0变为最大x?< / p>

3 个答案:

答案 0 :(得分:2)

简单的三角学。 sin(angle) = opposite / adjacentoppositey值,adjacentx值。所以Math.asin((xx - x) / (yy - y))其中xx和yy是弧心的坐标。这将为您提供角度,然后您可以将2 * Math.PI除以。

我不记得负面数字会发生什么。您可能必须获取参数的Math.abs值,然后计算出点击所在的象限(使用<>轻松完成)并添加Math.PI / 2对于每一个。

答案 1 :(得分:1)

这包括检查鼠标是否在弧内:

// Return range is 0 to Math.PI * 2
function get_mouse_circle_angle(origin_x, origin_y, mouse_x, mouse_y) {
    var mouse_angle = Math.atan2(mouse_y - origin_y, mouse_x - origin_x);
    if (mouse_angle < 0) {
        mouse_angle = (Math.PI * 2) + mouse_angle;
    }
    return mouse_angle;
}

// Return range is [0, 1)
// 0/1 is 3 oclock
function get_mouse_circle_percent(origin_x, origin_y, mouse_x, mouse_y) {
    var mouse_angle = get_mouse_circle_angle(origin_x, origin_y, mouse_x, mouse_y);
    return mouse_angle / (2 * Math.PI);
}

function get_mouse_arc_pos(origin_x, origin_y, mouse_x, mouse_y, radius, thickness) {
    var mouse_angle = Math.atan2(mouse_y - origin_y, mouse_x - origin_x);
    if (mouse_angle < 0) {
        mouse_angle = (Math.PI * 2) + mouse_angle;
    }
    var mouse_percent = mouse_angle / (2 * Math.PI);

    var circle_edge_x = origin_x + (radius + thickness / 2) * Math.cos(mouse_angle);
    var circle_edge_y = origin_y + (radius + thickness / 2) * Math.sin(mouse_angle);

    var arc_inside_x = origin_x + (radius - thickness / 2) * Math.cos(mouse_angle);
    var arc_inside_y = origin_y + (radius - thickness / 2) * Math.sin(mouse_angle);

    var is_in_circle = true;

    if (mouse_angle <= (2 * Math.PI) * 0.25) {
        if (mouse_x > circle_edge_x || mouse_y > circle_edge_y)
            is_in_circle = false;
    }
    else if (mouse_angle <= (2 * Math.PI) * 0.5) {
        if (mouse_x < circle_edge_x || mouse_y > circle_edge_y)
            is_in_circle = false;
    }
    else if (mouse_angle <= (2 * Math.PI) * 0.75) {
        if (mouse_x < circle_edge_x || mouse_y < circle_edge_y)
            is_in_circle = false;
    }
    else {
        if (mouse_x > circle_edge_x || mouse_y < circle_edge_y)
            is_in_circle = false;
    }

    var is_in_arc = is_in_circle;
    if (is_in_circle) {
        if (mouse_angle <= (2 * Math.PI) * 0.25) {
            if (mouse_x < arc_inside_x || mouse_y < arc_inside_y)
                is_in_arc = false;
        }
        else if (mouse_angle <= (2 * Math.PI) * 0.5) {
            if (mouse_x > arc_inside_x || mouse_y < arc_inside_y)
                is_in_arc = false;
        }
        else if (mouse_angle <= (2 * Math.PI) * 0.75) {
            if (mouse_x > arc_inside_x || mouse_y > arc_inside_y)
                is_in_arc = false;
        }
        else {
            if (mouse_x < arc_inside_x || mouse_y > arc_inside_y)
                is_in_arc = false;
        }
    }

    return {
        angle: mouse_angle,
        percent: mouse_percent,
        is_in_circle: is_in_circle,
        is_in_arc: is_in_arc
    };
}

答案 2 :(得分:0)

没有真正测试过,但从技术上讲,它应该可以运行:

// Where x1 and y1 should be the coordinates of the arc's center
function angle(x1, y1, x2, y2) {
    // Calculate a · b
    var nominator = x1 * x2 + y1 * y2;

    // Calculate ||a|| ||b||
    var denominator = Math.sqrt(x1*x1 + y1*y1) * Math.sqrt(x2*x2 + y2*y2);
    if (denominator == 0) return 0; // Indifinite angle

    // Return the angle
    return Math.acos(nominator / denominator);
}

// Returns a percent, might be negative
var percent = angle(0, 0, mouseX, mouseY) / (2*Math.PI);

修改

对于负数,您可以尝试添加1,因为它在[-1,1]范围内

if (percent < 0) percent += 1;