以下是C ++中的一个简单循环。计时器使用QueryPerformanceCounter()并且非常准确。我发现Java需要60%的时间用C ++,这不可能是什么?!我在这做错了什么?即使严格的别名(这里没有包含在代码中)也没有任何帮助......
long long var = 0;
std::array<int, 1024> arr;
int* arrPtr = arr.data();
CHighPrecisionTimer timer;
for(int i = 0; i < 1024; i++) arrPtr[i] = i;
timer.Start();
for(int i = 0; i < 1024 * 1024 * 10; i++){
for(int x = 0; x < 1024; x++){
var += arrPtr[x];
}
}
timer.Stop();
printf("Unrestricted: %lld us, Value = %lld\n", (Int64)timer.GetElapsed().GetMicros(), var);
这个C ++在大约9.5秒内完成。我正在使用英特尔编译器12.1与主机处理器优化(特别是我的)和一切最大化。所以这是英特尔编译器的最佳选择!自动并行化有趣地消耗70%的CPU而不是25%,但是不能更快地完成工作;)...
现在我使用以下Java代码进行比较:
long var = 0;
int[] arr = new int[1024];
for(int i = 0; i < 1024; i++) arr[i] = i;
for(int i = 0; i < 1024 * 1024; i++){
for(int x = 0; x < 1024; x++){
var += arr[x];
}
}
long nanos = System.nanoTime();
for(int i = 0; i < 1024 * 1024 * 10; i++){
for(int x = 0; x < 1024; x++){
var += arr[x];
}
}
nanos = (System.nanoTime() - nanos) / 1000;
System.out.print("Value: " + var + ", Time: " + nanos);
使用积极优化和服务器VM(无调试)调用Java代码。它在我的机器上运行大约7秒钟(仅使用一个线程)。
这是英特尔编译器的失败还是我再次愚蠢了?
[编辑]:好的,现在发生了事情......似乎更像是英特尔编译器中的一个错误^^。 [请注意,我使用的是英特尔Quadcore Q6600,相当陈旧。可能是英特尔编译器在最新的CPU上表现得更好,比如Core i7]
Intel x86 (without vectorization): 3 seconds
MSVC x64: 5 seconds
Java x86/x64 (Oracle Java 7): 7 seconds
Intel x64 (with vectorization): 9.5 seconds
Intel x86 (with vectorization): 9.5 seconds
Intel x64 (without vectorization): 12 seconds
MSVC x86: 15 seconds (uhh)
[编辑]:另一个不错的案例;)。考虑以下简单的lambda表达式
#include <stdio.h>
#include <tchar.h>
#include <Windows.h>
#include <vector>
#include <boost/function.hpp>
#include <boost/lambda/bind.hpp>
#include <boost/typeof/typeof.hpp>
template<class TValue>
struct ArrayList
{
private:
std::vector<TValue> m_Entries;
public:
template<class TCallback>
void Foreach(TCallback inCallback)
{
for(int i = 0, size = m_Entries.size(); i < size; i++)
{
inCallback(i);
}
}
void Add(TValue inValue)
{
m_Entries.push_back(inValue);
}
};
int _tmain(int argc, _TCHAR* argv[])
{
auto t = [&]() {};
ArrayList<int> arr;
int res = 0;
for(int i = 0; i < 100; i++)
{
arr.Add(i);
}
long long freq, t1, t2;
QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
QueryPerformanceCounter((LARGE_INTEGER*)&t1);
for(int i = 0; i < 1000 * 1000 * 10; i++)
{
arr.Foreach([&](int v) {
res += i;
});
}
QueryPerformanceCounter((LARGE_INTEGER*)&t2);
printf("Time: %lld\n", ((t2-t1) * 1000000) / freq);
if(res == 4950)
return -1;
return 0;
}
英特尔编译器再次闪耀:
MSVC x86/x64: 12 milli seconds
Intel x86/x64: 1 second
嗯?好吧,我想慢了90倍并不是一件坏事......
我不确定这是否适用: 好的,基于这个帖子的答案:英特尔编译器是已知的(我也知道,但我只是没想到他们可以放弃对他们的处理器的支持)在非处理器上有可怕的性能“已知”编译器,如AMD处理器,甚至可能是过时的英特尔处理器......如果有人使用最新的英特尔处理器可以尝试这样做会很好;)。
以下是英特尔编译器的x64输出:
std::array<int, 1024> arr;
int* arrPtr = arr.data();
QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
000000013F05101D lea rcx,[freq]
000000013F051022 call qword ptr [__imp_QueryPerformanceFrequency (13F052000h)]
for(int i = 0; i < 1024; i++) arrPtr[i] = i;
000000013F051028 mov eax,4
000000013F05102D movd xmm0,eax
000000013F051031 xor eax,eax
000000013F051033 pshufd xmm1,xmm0,0
000000013F051038 movdqa xmm0,xmmword ptr [__xi_z+28h (13F0521A0h)]
000000013F051040 movdqa xmmword ptr arr[rax*4],xmm0
000000013F051046 paddd xmm0,xmm1
000000013F05104A movdqa xmmword ptr [rsp+rax*4+60h],xmm0
000000013F051050 paddd xmm0,xmm1
000000013F051054 movdqa xmmword ptr [rsp+rax*4+70h],xmm0
000000013F05105A paddd xmm0,xmm1
000000013F05105E movdqa xmmword ptr [rsp+rax*4+80h],xmm0
000000013F051067 add rax,10h
000000013F05106B paddd xmm0,xmm1
000000013F05106F cmp rax,400h
000000013F051075 jb wmain+40h (13F051040h)
QueryPerformanceCounter((LARGE_INTEGER*)&t1);
000000013F051077 lea rcx,[t1]
000000013F05107C call qword ptr [__imp_QueryPerformanceCounter (13F052008h)]
var += arrPtr[x];
000000013F051082 movdqa xmm1,xmmword ptr [__xi_z+38h (13F0521B0h)]
for(int i = 0; i < 1024 * 1024 * 10; i++){
000000013F05108A xor eax,eax
var += arrPtr[x];
000000013F05108C movdqa xmm0,xmmword ptr [__xi_z+48h (13F0521C0h)]
long long var = 0, freq, t1, t2;
000000013F051094 pxor xmm6,xmm6
for(int x = 0; x < 1024; x++){
000000013F051098 xor r8d,r8d
var += arrPtr[x];
000000013F05109B lea rdx,[arr]
000000013F0510A0 xor ecx,ecx
000000013F0510A2 movq xmm2,mmword ptr arr[rcx]
for(int x = 0; x < 1024; x++){
000000013F0510A8 add r8,8
var += arrPtr[x];
000000013F0510AC punpckldq xmm2,xmm2
for(int x = 0; x < 1024; x++){
000000013F0510B0 add rcx,20h
var += arrPtr[x];
000000013F0510B4 movdqa xmm3,xmm2
000000013F0510B8 pand xmm2,xmm0
000000013F0510BC movq xmm4,mmword ptr [rdx+8]
000000013F0510C1 psrad xmm3,1Fh
000000013F0510C6 punpckldq xmm4,xmm4
000000013F0510CA pand xmm3,xmm1
000000013F0510CE por xmm3,xmm2
000000013F0510D2 movdqa xmm5,xmm4
000000013F0510D6 movq xmm2,mmword ptr [rdx+10h]
000000013F0510DB psrad xmm5,1Fh
000000013F0510E0 punpckldq xmm2,xmm2
000000013F0510E4 pand xmm5,xmm1
000000013F0510E8 paddq xmm6,xmm3
000000013F0510EC pand xmm4,xmm0
000000013F0510F0 movdqa xmm3,xmm2
000000013F0510F4 por xmm5,xmm4
000000013F0510F8 psrad xmm3,1Fh
000000013F0510FD movq xmm4,mmword ptr [rdx+18h]
000000013F051102 pand xmm3,xmm1
000000013F051106 punpckldq xmm4,xmm4
000000013F05110A pand xmm2,xmm0
000000013F05110E por xmm3,xmm2
000000013F051112 movdqa xmm2,xmm4
000000013F051116 paddq xmm6,xmm5
000000013F05111A psrad xmm2,1Fh
000000013F05111F pand xmm4,xmm0
000000013F051123 pand xmm2,xmm1
for(int x = 0; x < 1024; x++){
000000013F051127 add rdx,20h
var += arrPtr[x];
000000013F05112B paddq xmm6,xmm3
000000013F05112F por xmm2,xmm4
for(int x = 0; x < 1024; x++){
000000013F051133 cmp r8,400h
var += arrPtr[x];
000000013F05113A paddq xmm6,xmm2
for(int x = 0; x < 1024; x++){
000000013F05113E jb wmain+0A2h (13F0510A2h)
for(int i = 0; i < 1024 * 1024 * 10; i++){
000000013F051144 inc eax
000000013F051146 cmp eax,0A00000h
000000013F05114B jb wmain+98h (13F051098h)
}
}
QueryPerformanceCounter((LARGE_INTEGER*)&t2);
000000013F051151 lea rcx,[t2]
000000013F051156 call qword ptr [__imp_QueryPerformanceCounter (13F052008h)]
printf("Unrestricted: %lld ms, Value = %lld\n", ((t2-t1)*1000/freq), var);
000000013F05115C mov r9,qword ptr [t2]
long long var = 0, freq, t1, t2;
000000013F051161 movdqa xmm0,xmm6
printf("Unrestricted: %lld ms, Value = %lld\n", ((t2-t1)*1000/freq), var);
000000013F051165 sub r9,qword ptr [t1]
000000013F05116A lea rcx,[string "Unrestricted: %lld ms, Value = %"... (13F0521D0h)]
000000013F051171 imul rax,r9,3E8h
000000013F051178 cqo
000000013F05117A mov r10,qword ptr [freq]
000000013F05117F idiv rax,r10
long long var = 0, freq, t1, t2;
000000013F051182 psrldq xmm0,8
printf("Unrestricted: %lld ms, Value = %lld\n", ((t2-t1)*1000/freq), var);
000000013F051187 mov rdx,rax
long long var = 0, freq, t1, t2;
000000013F05118A paddq xmm6,xmm0
000000013F05118E movd r8,xmm6
printf("Unrestricted: %lld ms, Value = %lld\n", ((t2-t1)*1000/freq), var);
000000013F051193 call qword ptr [__imp_printf (13F052108h)]
这是MSVC x64版本的集合:
int _tmain(int argc, _TCHAR* argv[])
{
000000013FF61000 push rbx
000000013FF61002 mov eax,1050h
000000013FF61007 call __chkstk (13FF61950h)
000000013FF6100C sub rsp,rax
000000013FF6100F mov rax,qword ptr [__security_cookie (13FF63000h)]
000000013FF61016 xor rax,rsp
000000013FF61019 mov qword ptr [rsp+1040h],rax
long long var = 0, freq, t1, t2;
std::array<int, 1024> arr;
int* arrPtr = arr.data();
QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
000000013FF61021 lea rcx,[rsp+28h]
000000013FF61026 xor ebx,ebx
000000013FF61028 call qword ptr [__imp_QueryPerformanceFrequency (13FF62000h)]
for(int i = 0; i < 1024; i++) arrPtr[i] = i;
000000013FF6102E xor r11d,r11d
000000013FF61031 lea rax,[rsp+40h]
000000013FF61036 mov dword ptr [rax],r11d
000000013FF61039 inc r11d
000000013FF6103C add rax,4
000000013FF61040 cmp r11d,400h
000000013FF61047 jl wmain+36h (13FF61036h)
QueryPerformanceCounter((LARGE_INTEGER*)&t1);
000000013FF61049 lea rcx,[rsp+20h]
000000013FF6104E call qword ptr [__imp_QueryPerformanceCounter (13FF62008h)]
000000013FF61054 mov r11d,0A00000h
000000013FF6105A nop word ptr [rax+rax]
for(int i = 0; i < 1024 * 1024 * 10; i++){
for(int x = 0; x < 1024; x++){
000000013FF61060 xor edx,edx
000000013FF61062 xor r8d,r8d
000000013FF61065 lea rcx,[rsp+48h]
000000013FF6106A xor r9d,r9d
000000013FF6106D mov r10d,100h
000000013FF61073 nop word ptr [rax+rax]
var += arrPtr[x];
000000013FF61080 movsxd rax,dword ptr [rcx-8]
000000013FF61084 add rcx,10h
000000013FF61088 add rbx,rax
000000013FF6108B movsxd rax,dword ptr [rcx-14h]
000000013FF6108F add r9,rax
000000013FF61092 movsxd rax,dword ptr [rcx-10h]
000000013FF61096 add r8,rax
000000013FF61099 movsxd rax,dword ptr [rcx-0Ch]
000000013FF6109D add rdx,rax
000000013FF610A0 dec r10
000000013FF610A3 jne wmain+80h (13FF61080h)
for(int i = 0; i < 1024 * 1024 * 10; i++){
for(int x = 0; x < 1024; x++){
000000013FF610A5 lea rax,[rdx+r8]
000000013FF610A9 add rax,r9
000000013FF610AC add rbx,rax
000000013FF610AF dec r11
000000013FF610B2 jne wmain+60h (13FF61060h)
}
}
QueryPerformanceCounter((LARGE_INTEGER*)&t2);
000000013FF610B4 lea rcx,[rsp+30h]
000000013FF610B9 call qword ptr [__imp_QueryPerformanceCounter (13FF62008h)]
printf("Unrestricted: %lld ms, Value = %lld\n", ((t2-t1)*1000/freq), var);
000000013FF610BF mov rax,qword ptr [rsp+30h]
000000013FF610C4 lea rcx,[string "Unrestricted: %lld ms, Value = %"... (13FF621B0h)]
000000013FF610CB sub rax,qword ptr [rsp+20h]
000000013FF610D0 mov r8,rbx
000000013FF610D3 imul rax,rax,3E8h
000000013FF610DA cqo
000000013FF610DC idiv rax,qword ptr [rsp+28h]
000000013FF610E1 mov rdx,rax
000000013FF610E4 call qword ptr [__imp_printf (13FF62138h)]
return 0;
000000013FF610EA xor eax,eax
英特尔编译器配置没有Vectorization,64位,最高优化(这非常慢,12秒):
000000013FC0102F lea rcx,[freq]
double var = 0; long long freq, t1, t2;
000000013FC01034 xorps xmm6,xmm6
std::array<double, 1024> arr;
double* arrPtr = arr.data();
QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
000000013FC01037 call qword ptr [__imp_QueryPerformanceFrequency (13FC02000h)]
for(int i = 0; i < 1024; i++) arrPtr[i] = i;
000000013FC0103D mov eax,2
000000013FC01042 mov rdx,100000000h
000000013FC0104C movd xmm0,eax
000000013FC01050 xor eax,eax
000000013FC01052 pshufd xmm1,xmm0,0
000000013FC01057 movd xmm0,rdx
000000013FC0105C nop dword ptr [rax]
000000013FC01060 cvtdq2pd xmm2,xmm0
000000013FC01064 paddd xmm0,xmm1
000000013FC01068 cvtdq2pd xmm3,xmm0
000000013FC0106C paddd xmm0,xmm1
000000013FC01070 cvtdq2pd xmm4,xmm0
000000013FC01074 paddd xmm0,xmm1
000000013FC01078 cvtdq2pd xmm5,xmm0
000000013FC0107C movaps xmmword ptr arr[rax*8],xmm2
000000013FC01081 paddd xmm0,xmm1
000000013FC01085 movaps xmmword ptr [rsp+rax*8+60h],xmm3
000000013FC0108A movaps xmmword ptr [rsp+rax*8+70h],xmm4
000000013FC0108F movaps xmmword ptr [rsp+rax*8+80h],xmm5
000000013FC01097 add rax,8
000000013FC0109B cmp rax,400h
000000013FC010A1 jb wmain+60h (13FC01060h)
QueryPerformanceCounter((LARGE_INTEGER*)&t1);
000000013FC010A3 lea rcx,[t1]
000000013FC010A8 call qword ptr [__imp_QueryPerformanceCounter (13FC02008h)]
for(int i = 0; i < 1024 * 1024 * 10; i++){
000000013FC010AE xor eax,eax
for(int x = 0; x < 1024; x++){
000000013FC010B0 xor edx,edx
var += arrPtr[x];
000000013FC010B2 lea ecx,[rdx+rdx]
for(int x = 0; x < 1024; x++){
000000013FC010B5 inc edx
for(int x = 0; x < 1024; x++){
000000013FC010B7 cmp edx,200h
var += arrPtr[x];
000000013FC010BD addsd xmm6,mmword ptr arr[rcx*8]
000000013FC010C3 addsd xmm6,mmword ptr [rsp+rcx*8+58h]
for(int x = 0; x < 1024; x++){
000000013FC010C9 jb wmain+0B2h (13FC010B2h)
for(int i = 0; i < 1024 * 1024 * 10; i++){
000000013FC010CB inc eax
000000013FC010CD cmp eax,0A00000h
000000013FC010D2 jb wmain+0B0h (13FC010B0h)
}
}
QueryPerformanceCounter((LARGE_INTEGER*)&t2);
000000013FC010D4 lea rcx,[t2]
000000013FC010D9 call qword ptr [__imp_QueryPerformanceCounter (13FC02008h)]
英特尔编译器没有矢量化,32位和最高优化(现在显然是胜利者,大约3秒运行,组装看起来好多了):
00B81088 lea eax,[t1]
00B8108C push eax
00B8108D call dword ptr [__imp__QueryPerformanceCounter@4 (0B82004h)]
00B81093 xor eax,eax
00B81095 pxor xmm0,xmm0
00B81099 movaps xmm1,xmm0
for(int x = 0; x < 1024; x++){
00B8109C xor edx,edx
var += arrPtr[x];
00B8109E addpd xmm0,xmmword ptr arr[edx*8]
00B810A4 addpd xmm1,xmmword ptr [esp+edx*8+40h]
00B810AA addpd xmm0,xmmword ptr [esp+edx*8+50h]
00B810B0 addpd xmm1,xmmword ptr [esp+edx*8+60h]
for(int x = 0; x < 1024; x++){
00B810B6 add edx,8
00B810B9 cmp edx,400h
00B810BF jb wmain+9Eh (0B8109Eh)
for(int i = 0; i < 1024 * 1024 * 10; i++){
00B810C1 inc eax
00B810C2 cmp eax,0A00000h
00B810C7 jb wmain+9Ch (0B8109Ch)
double var = 0; long long freq, t1, t2;
00B810C9 addpd xmm0,xmm1
}
}
QueryPerformanceCounter((LARGE_INTEGER*)&t2);
00B810CD lea eax,[t2]
00B810D1 push eax
00B810D2 movaps xmmword ptr [esp+4],xmm0
00B810D7 call dword ptr [__imp__QueryPerformanceCounter@4 (0B82004h)]
00B810DD movaps xmm0,xmmword ptr [esp]
答案 0 :(得分:69)
tl;博士:你在这里看到的似乎是 ICC未能成功完成循环。
让我们从MSVC x64开始:
这是关键循环:
$LL3@main:
movsxd rax, DWORD PTR [rdx-4]
movsxd rcx, DWORD PTR [rdx-8]
add rdx, 16
add r10, rax
movsxd rax, DWORD PTR [rdx-16]
add rbx, rcx
add r9, rax
movsxd rax, DWORD PTR [rdx-12]
add r8, rax
dec r11
jne SHORT $LL3@main
您在此处看到的是编译器展开的标准循环。 MSVC展开4次迭代,并将var
变量分为四个寄存器:r10
,rbx
,r9
和r8
。然后在循环结束时,将这4个寄存器汇总在一起。
这里重新组合了4个总和:
lea rax, QWORD PTR [r8+r9]
add rax, r10
add rbx, rax
dec rdi
jne SHORT $LL6@main
请注意,MSVC目前不进行自动矢量化。
现在让我们看看你ICC输出的一部分:
000000013F0510A2 movq xmm2,mmword ptr arr[rcx]
000000013F0510A8 add r8,8
000000013F0510AC punpckldq xmm2,xmm2
000000013F0510B0 add rcx,20h
000000013F0510B4 movdqa xmm3,xmm2
000000013F0510B8 pand xmm2,xmm0
000000013F0510BC movq xmm4,mmword ptr [rdx+8]
000000013F0510C1 psrad xmm3,1Fh
000000013F0510C6 punpckldq xmm4,xmm4
000000013F0510CA pand xmm3,xmm1
000000013F0510CE por xmm3,xmm2
000000013F0510D2 movdqa xmm5,xmm4
000000013F0510D6 movq xmm2,mmword ptr [rdx+10h]
000000013F0510DB psrad xmm5,1Fh
000000013F0510E0 punpckldq xmm2,xmm2
000000013F0510E4 pand xmm5,xmm1
000000013F0510E8 paddq xmm6,xmm3
...
您在这里看到的是ICC尝试对此循环进行矢量化。这是以与MSVC类似的方式(分成多个和)完成的,但是使用SSE寄存器而不是每个寄存器有两个和。
但事实证明,矢量化的开销恰好超过了矢量化的好处。
如果我们逐一说明这些说明,我们可以看到ICC如何尝试对其进行矢量化:
// Load two ints using a 64-bit load. {x, y, 0, 0}
movq xmm2,mmword ptr arr[rcx]
// Shuffle the data into this form.
punpckldq xmm2,xmm2 xmm2 = {x, x, y, y}
movdqa xmm3,xmm2 xmm3 = {x, x, y, y}
// Mask out index 1 and 3.
pand xmm2,xmm0 xmm2 = {x, 0, y, 0}
// Arithmetic right-shift to copy sign-bit across the word.
psrad xmm3,1Fh xmm3 = {sign(x), sign(x), sign(y), sign(y)}
// Mask out index 0 and 2.
pand xmm3,xmm1 xmm3 = {0, sign(x), 0, sign(y)}
// Combine to get sign-extended values.
por xmm3,xmm2 xmm3 = {x, sign(x), y, sign(y)}
xmm3 = {x, y}
// Add to accumulator...
paddq xmm6,xmm3
所以它正在做一些非常凌乱的解包只是为了矢量化。混乱来自于需要仅使用SSE指令将32位整数符号扩展为64位。
SSE4.1实际上为此提供了PMOVSXDQ
指令。但是目标机器不支持SSE4.1,或者ICC在这种情况下不够智能使用它。
但重点是:
英特尔编译器正试图对循环进行矢量化。但是,增加的开销似乎超过了首先将其矢量化的好处。因此,为什么它会变慢。
您将数据类型更改为double
。所以现在它是浮点数。没有更多丑陋的符号填充变化困扰整数版本。
但是,由于你禁用了x64版本的矢量化,它显然会变慢。
带矢量化的ICC x86:
00B8109E addpd xmm0,xmmword ptr arr[edx*8]
00B810A4 addpd xmm1,xmmword ptr [esp+edx*8+40h]
00B810AA addpd xmm0,xmmword ptr [esp+edx*8+50h]
00B810B0 addpd xmm1,xmmword ptr [esp+edx*8+60h]
00B810B6 add edx,8
00B810B9 cmp edx,400h
00B810BF jb wmain+9Eh (0B8109Eh)
这里不多 - 标准矢量化+ 4x循环展开。
没有矢量化的ICC x64:
000000013FC010B2 lea ecx,[rdx+rdx]
000000013FC010B5 inc edx
000000013FC010B7 cmp edx,200h
000000013FC010BD addsd xmm6,mmword ptr arr[rcx*8]
000000013FC010C3 addsd xmm6,mmword ptr [rsp+rcx*8+58h]
000000013FC010C9 jb wmain+0B2h (13FC010B2h)
无矢量化+仅2x循环展开。
所有条件相同,禁用矢量化会损害此浮点情况下的性能。
答案 1 :(得分:18)
这个例子很简单,不同的语言不应该有所作为,而且愚蠢到不能证明什么。可以通过编译器将循环优化为简单的赋值,或者在整个迭代次数中保持运行,或者可以展开一些迭代......我不确定为什么你决定编写该测试程序,但它不会对语言进行任何测试,因为一旦执行了逻辑优化,它就会归结为完全相同的程序集。
另外,关于intel编译器的性能,它将在很大程度上取决于确切的硬件和编译器版本。编译器生成不同版本的代码,并且倾向于为AMD处理器生成可怕的代码。即使对于英特尔,如果它不能识别特定的处理器,它也会回到安全的慢速模式。
答案 2 :(得分:11)
当你消除了不可能的事物时,无论剩下多少不可能,都必须是真理。
一方面你有一些数据,另一方面有一个假设(C ++总是比Java快)。当数据另有说明时,为什么要求人们为你的假设辩护?
如果您希望从JVM获取程序集以比较正在运行的程序集,那么命令行选项为'-XX:+ PrintOptoAssembly',但您需要下载调试jvm才能执行此操作。看一下装配会至少告诉你为什么一个比另一个快。
答案 3 :(得分:6)
仅仅为了记录,我在我的盒子(x86_64 linux),带有std::array
的C ++,普通int[1024]
上运行了两个代码,并且为了完整性还使用了long
代替{ {1}}。 Java(open-jdk 1.6)以3.8s计时,C ++(int)为3.37s,C ++(long)为3.9s。我的编译器是g ++ 4.5.1。也许只是英特尔的编译器并不像想象的那么好。
答案 4 :(得分:0)
我认为Java编译器实现JITC(及时编译,或者一些更新的技术)来接近本机编译器的速度,并且可以推断出你的数组没有改变,因此可以对内部循环应用常量折叠。
答案 5 :(得分:0)
我怀疑罪魁祸首是简单的循环展开。取代
var += arrPtr[x];
与
var += arrPtr[x++];
var += arrPtr[x++];
var += arrPtr[x++];
var += arrPtr[x];
并观察C ++版本的运行速度。
答案 6 :(得分:0)
我发现你正在运行以下循环
for(int i = 0; i < 1024 * 1024; i++){
for(int x = 0; x < 1024; x++){
var += arr[x];
}
}
在Java代码中两次;而在c ++代码中; 这可能会带来一个缓存预热,这使得Java代码最终比C ++执行得更快。