C ++ vs Java?为什么ICC生成的代码比VC慢?

时间:2012-01-19 01:08:29

标签: java c++ performance

以下是C ++中的一个简单循环。计时器使用QueryPerformanceCounter()并且非常准确。我发现Java需要60%的时间用C ++,这不可能是什么?!我在这做错了什么?即使严格的别名(这里没有包含在代码中)也没有任何帮助......

long long var = 0;
std::array<int, 1024> arr;
int* arrPtr = arr.data();
CHighPrecisionTimer timer;

for(int i = 0; i < 1024; i++) arrPtr[i] = i;

timer.Start();

for(int i = 0; i < 1024 * 1024 * 10; i++){
    for(int x = 0; x < 1024; x++){
        var += arrPtr[x];
    }
}

timer.Stop();

printf("Unrestricted: %lld us, Value = %lld\n", (Int64)timer.GetElapsed().GetMicros(), var);

这个C ++在大约9.5秒内完成。我正在使用英特尔编译器12.1与主机处理器优化(特别是我的)和一切最大化。所以这是英特尔编译器的最佳选择!自动并行化有趣地消耗70%的CPU而不是25%,但是不能更快地完成工作;)...

现在我使用以下Java代码进行比较:

    long var = 0;
    int[] arr = new int[1024];

    for(int i = 0; i < 1024; i++) arr[i] = i;

    for(int i = 0; i < 1024 * 1024; i++){
        for(int x = 0; x < 1024; x++){
            var += arr[x];
        }
    }

    long nanos = System.nanoTime();

    for(int i = 0; i < 1024 * 1024 * 10; i++){
        for(int x = 0; x < 1024; x++){
            var += arr[x];
        }
    }

    nanos = (System.nanoTime() - nanos) / 1000;

    System.out.print("Value: " + var + ", Time: " + nanos);

使用积极优化和服务器VM(无调试)调用Java代码。它在我的机器上运行大约7秒钟(仅使用一个线程)。

这是英特尔编译器的失败还是我再次愚蠢了?

[编辑]:好的,现在发生了事情......似乎更像是英特尔编译器中的一个错误^^。 [请注意,我使用的是英特尔Quadcore Q6600,相当陈旧。可能是英特尔编译器在最新的CPU上表现得更好,比如Core i7]

Intel x86 (without vectorization): 3 seconds
MSVC x64: 5 seconds
Java x86/x64 (Oracle Java 7): 7 seconds
Intel x64 (with vectorization): 9.5 seconds
Intel x86 (with vectorization): 9.5 seconds
Intel x64 (without vectorization): 12 seconds
MSVC x86: 15 seconds (uhh)

[编辑]:另一个不错的案例;)。考虑以下简单的lambda表达式

#include <stdio.h>
#include <tchar.h>
#include <Windows.h>
#include <vector>
#include <boost/function.hpp>
#include <boost/lambda/bind.hpp>
#include <boost/typeof/typeof.hpp>

template<class TValue>
struct ArrayList
{
private:
    std::vector<TValue> m_Entries;
public:

    template<class TCallback>
    void Foreach(TCallback inCallback)
    {
        for(int i = 0, size = m_Entries.size(); i < size; i++)
        {
            inCallback(i);
        }
    }

    void Add(TValue inValue)
    {
        m_Entries.push_back(inValue);
    }
};

int _tmain(int argc, _TCHAR* argv[])
{
    auto t = [&]() {};


    ArrayList<int> arr;
    int res = 0;

    for(int i = 0; i < 100; i++)
    {
        arr.Add(i);
    }

    long long freq, t1, t2;

    QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
    QueryPerformanceCounter((LARGE_INTEGER*)&t1);

    for(int i = 0; i < 1000 * 1000 * 10; i++)
    {
        arr.Foreach([&](int v) {
            res += i;
        });
    }

    QueryPerformanceCounter((LARGE_INTEGER*)&t2);

    printf("Time: %lld\n", ((t2-t1) * 1000000) / freq);

    if(res == 4950)
        return -1;

    return 0;
}

英特尔编译器再次闪耀:

MSVC x86/x64: 12 milli seconds
Intel x86/x64: 1 second

嗯?好吧,我想慢了90倍并不是一件坏事......

我不确定这是否适用: 好的,基于这个帖子的答案:英特尔编译器是已知的(我也知道,但我只是没想到他们可以放弃对他们的处理器的支持)在非处理器上有可怕的性能“已知”编译器,如AMD处理器,甚至可能是过时的英特尔处理器......如果有人使用最新的英特尔处理器可以尝试这样做会很好;)。

以下是英特尔编译器的x64输出:

    std::array<int, 1024> arr;
    int* arrPtr = arr.data();
    QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
000000013F05101D  lea         rcx,[freq]  
000000013F051022  call        qword ptr [__imp_QueryPerformanceFrequency (13F052000h)]  

    for(int i = 0; i < 1024; i++) arrPtr[i] = i;
000000013F051028  mov         eax,4  
000000013F05102D  movd        xmm0,eax  
000000013F051031  xor         eax,eax  
000000013F051033  pshufd      xmm1,xmm0,0  
000000013F051038  movdqa      xmm0,xmmword ptr [__xi_z+28h (13F0521A0h)]  
000000013F051040  movdqa      xmmword ptr arr[rax*4],xmm0  
000000013F051046  paddd       xmm0,xmm1  
000000013F05104A  movdqa      xmmword ptr [rsp+rax*4+60h],xmm0  
000000013F051050  paddd       xmm0,xmm1  
000000013F051054  movdqa      xmmword ptr [rsp+rax*4+70h],xmm0  
000000013F05105A  paddd       xmm0,xmm1  
000000013F05105E  movdqa      xmmword ptr [rsp+rax*4+80h],xmm0  
000000013F051067  add         rax,10h  
000000013F05106B  paddd       xmm0,xmm1  
000000013F05106F  cmp         rax,400h  
000000013F051075  jb          wmain+40h (13F051040h)  

    QueryPerformanceCounter((LARGE_INTEGER*)&t1);
000000013F051077  lea         rcx,[t1]  
000000013F05107C  call        qword ptr [__imp_QueryPerformanceCounter (13F052008h)]  
            var += arrPtr[x];
000000013F051082  movdqa      xmm1,xmmword ptr [__xi_z+38h (13F0521B0h)]  

    for(int i = 0; i < 1024 * 1024 * 10; i++){
000000013F05108A  xor         eax,eax  
            var += arrPtr[x];
000000013F05108C  movdqa      xmm0,xmmword ptr [__xi_z+48h (13F0521C0h)]  
    long long var = 0, freq, t1, t2;
000000013F051094  pxor        xmm6,xmm6  
        for(int x = 0; x < 1024; x++){
000000013F051098  xor         r8d,r8d  
            var += arrPtr[x];
000000013F05109B  lea         rdx,[arr]  
000000013F0510A0  xor         ecx,ecx  
000000013F0510A2  movq        xmm2,mmword ptr arr[rcx]  
        for(int x = 0; x < 1024; x++){
000000013F0510A8  add         r8,8  
            var += arrPtr[x];
000000013F0510AC  punpckldq   xmm2,xmm2  
        for(int x = 0; x < 1024; x++){
000000013F0510B0  add         rcx,20h  
            var += arrPtr[x];
000000013F0510B4  movdqa      xmm3,xmm2  
000000013F0510B8  pand        xmm2,xmm0  
000000013F0510BC  movq        xmm4,mmword ptr [rdx+8]  
000000013F0510C1  psrad       xmm3,1Fh  
000000013F0510C6  punpckldq   xmm4,xmm4  
000000013F0510CA  pand        xmm3,xmm1  
000000013F0510CE  por         xmm3,xmm2  
000000013F0510D2  movdqa      xmm5,xmm4  
000000013F0510D6  movq        xmm2,mmword ptr [rdx+10h]  
000000013F0510DB  psrad       xmm5,1Fh  
000000013F0510E0  punpckldq   xmm2,xmm2  
000000013F0510E4  pand        xmm5,xmm1  
000000013F0510E8  paddq       xmm6,xmm3  
000000013F0510EC  pand        xmm4,xmm0  
000000013F0510F0  movdqa      xmm3,xmm2  
000000013F0510F4  por         xmm5,xmm4  
000000013F0510F8  psrad       xmm3,1Fh  
000000013F0510FD  movq        xmm4,mmword ptr [rdx+18h]  
000000013F051102  pand        xmm3,xmm1  
000000013F051106  punpckldq   xmm4,xmm4  
000000013F05110A  pand        xmm2,xmm0  
000000013F05110E  por         xmm3,xmm2  
000000013F051112  movdqa      xmm2,xmm4  
000000013F051116  paddq       xmm6,xmm5  
000000013F05111A  psrad       xmm2,1Fh  
000000013F05111F  pand        xmm4,xmm0  
000000013F051123  pand        xmm2,xmm1  
        for(int x = 0; x < 1024; x++){
000000013F051127  add         rdx,20h  
            var += arrPtr[x];
000000013F05112B  paddq       xmm6,xmm3  
000000013F05112F  por         xmm2,xmm4  
        for(int x = 0; x < 1024; x++){
000000013F051133  cmp         r8,400h  
            var += arrPtr[x];
000000013F05113A  paddq       xmm6,xmm2  
        for(int x = 0; x < 1024; x++){
000000013F05113E  jb          wmain+0A2h (13F0510A2h)  

    for(int i = 0; i < 1024 * 1024 * 10; i++){
000000013F051144  inc         eax  
000000013F051146  cmp         eax,0A00000h  
000000013F05114B  jb          wmain+98h (13F051098h)  
        }
    }

    QueryPerformanceCounter((LARGE_INTEGER*)&t2);
000000013F051151  lea         rcx,[t2]  
000000013F051156  call        qword ptr [__imp_QueryPerformanceCounter (13F052008h)]  

    printf("Unrestricted: %lld ms, Value = %lld\n", ((t2-t1)*1000/freq), var);
000000013F05115C  mov         r9,qword ptr [t2]  
    long long var = 0, freq, t1, t2;
000000013F051161  movdqa      xmm0,xmm6  

    printf("Unrestricted: %lld ms, Value = %lld\n", ((t2-t1)*1000/freq), var);
000000013F051165  sub         r9,qword ptr [t1]  
000000013F05116A  lea         rcx,[string "Unrestricted: %lld ms, Value = %"... (13F0521D0h)]  
000000013F051171  imul        rax,r9,3E8h  
000000013F051178  cqo  
000000013F05117A  mov         r10,qword ptr [freq]  
000000013F05117F  idiv        rax,r10  
    long long var = 0, freq, t1, t2;
000000013F051182  psrldq      xmm0,8  

    printf("Unrestricted: %lld ms, Value = %lld\n", ((t2-t1)*1000/freq), var);
000000013F051187  mov         rdx,rax  
    long long var = 0, freq, t1, t2;
000000013F05118A  paddq       xmm6,xmm0  
000000013F05118E  movd        r8,xmm6  

    printf("Unrestricted: %lld ms, Value = %lld\n", ((t2-t1)*1000/freq), var);
000000013F051193  call        qword ptr [__imp_printf (13F052108h)]  

这是MSVC x64版本的集合:

int _tmain(int argc, _TCHAR* argv[])
{
000000013FF61000  push        rbx  
000000013FF61002  mov         eax,1050h  
000000013FF61007  call        __chkstk (13FF61950h)  
000000013FF6100C  sub         rsp,rax  
000000013FF6100F  mov         rax,qword ptr [__security_cookie (13FF63000h)]  
000000013FF61016  xor         rax,rsp  
000000013FF61019  mov         qword ptr [rsp+1040h],rax  
    long long var = 0, freq, t1, t2;
    std::array<int, 1024> arr;
    int* arrPtr = arr.data();
    QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
000000013FF61021  lea         rcx,[rsp+28h]  
000000013FF61026  xor         ebx,ebx  
000000013FF61028  call        qword ptr [__imp_QueryPerformanceFrequency (13FF62000h)]  

    for(int i = 0; i < 1024; i++) arrPtr[i] = i;
000000013FF6102E  xor         r11d,r11d  
000000013FF61031  lea         rax,[rsp+40h]  
000000013FF61036  mov         dword ptr [rax],r11d  
000000013FF61039  inc         r11d  
000000013FF6103C  add         rax,4  
000000013FF61040  cmp         r11d,400h  
000000013FF61047  jl          wmain+36h (13FF61036h)  

    QueryPerformanceCounter((LARGE_INTEGER*)&t1);
000000013FF61049  lea         rcx,[rsp+20h]  
000000013FF6104E  call        qword ptr [__imp_QueryPerformanceCounter (13FF62008h)]  
000000013FF61054  mov         r11d,0A00000h  
000000013FF6105A  nop         word ptr [rax+rax]  

    for(int i = 0; i < 1024 * 1024 * 10; i++){
        for(int x = 0; x < 1024; x++){
000000013FF61060  xor         edx,edx  
000000013FF61062  xor         r8d,r8d  
000000013FF61065  lea         rcx,[rsp+48h]  
000000013FF6106A  xor         r9d,r9d  
000000013FF6106D  mov         r10d,100h  
000000013FF61073  nop         word ptr [rax+rax]  
            var += arrPtr[x];
000000013FF61080  movsxd      rax,dword ptr [rcx-8]  
000000013FF61084  add         rcx,10h  
000000013FF61088  add         rbx,rax  
000000013FF6108B  movsxd      rax,dword ptr [rcx-14h]  
000000013FF6108F  add         r9,rax  
000000013FF61092  movsxd      rax,dword ptr [rcx-10h]  
000000013FF61096  add         r8,rax  
000000013FF61099  movsxd      rax,dword ptr [rcx-0Ch]  
000000013FF6109D  add         rdx,rax  
000000013FF610A0  dec         r10  
000000013FF610A3  jne         wmain+80h (13FF61080h)  

    for(int i = 0; i < 1024 * 1024 * 10; i++){
        for(int x = 0; x < 1024; x++){
000000013FF610A5  lea         rax,[rdx+r8]  
000000013FF610A9  add         rax,r9  
000000013FF610AC  add         rbx,rax  
000000013FF610AF  dec         r11  
000000013FF610B2  jne         wmain+60h (13FF61060h)  
        }
    }

    QueryPerformanceCounter((LARGE_INTEGER*)&t2);
000000013FF610B4  lea         rcx,[rsp+30h]  
000000013FF610B9  call        qword ptr [__imp_QueryPerformanceCounter (13FF62008h)]  

    printf("Unrestricted: %lld ms, Value = %lld\n", ((t2-t1)*1000/freq), var);
000000013FF610BF  mov         rax,qword ptr [rsp+30h]  
000000013FF610C4  lea         rcx,[string "Unrestricted: %lld ms, Value = %"... (13FF621B0h)]  
000000013FF610CB  sub         rax,qword ptr [rsp+20h]  
000000013FF610D0  mov         r8,rbx  
000000013FF610D3  imul        rax,rax,3E8h  
000000013FF610DA  cqo  
000000013FF610DC  idiv        rax,qword ptr [rsp+28h]  
000000013FF610E1  mov         rdx,rax  
000000013FF610E4  call        qword ptr [__imp_printf (13FF62138h)]  

    return 0;
000000013FF610EA  xor         eax,eax  

英特尔编译器配置没有Vectorization,64位,最高优化(这非常慢,12秒):

000000013FC0102F  lea         rcx,[freq]  

    double var = 0; long long freq, t1, t2;
000000013FC01034  xorps       xmm6,xmm6  
    std::array<double, 1024> arr;
    double* arrPtr = arr.data();
    QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
000000013FC01037  call        qword ptr [__imp_QueryPerformanceFrequency (13FC02000h)]  

    for(int i = 0; i < 1024; i++) arrPtr[i] = i;
000000013FC0103D  mov         eax,2  
000000013FC01042  mov         rdx,100000000h  
000000013FC0104C  movd        xmm0,eax  
000000013FC01050  xor         eax,eax  
000000013FC01052  pshufd      xmm1,xmm0,0  
000000013FC01057  movd        xmm0,rdx  
000000013FC0105C  nop         dword ptr [rax]  
000000013FC01060  cvtdq2pd    xmm2,xmm0  
000000013FC01064  paddd       xmm0,xmm1  
000000013FC01068  cvtdq2pd    xmm3,xmm0  
000000013FC0106C  paddd       xmm0,xmm1  
000000013FC01070  cvtdq2pd    xmm4,xmm0  
000000013FC01074  paddd       xmm0,xmm1  
000000013FC01078  cvtdq2pd    xmm5,xmm0  
000000013FC0107C  movaps      xmmword ptr arr[rax*8],xmm2  
000000013FC01081  paddd       xmm0,xmm1  
000000013FC01085  movaps      xmmword ptr [rsp+rax*8+60h],xmm3  
000000013FC0108A  movaps      xmmword ptr [rsp+rax*8+70h],xmm4  
000000013FC0108F  movaps      xmmword ptr [rsp+rax*8+80h],xmm5  
000000013FC01097  add         rax,8  
000000013FC0109B  cmp         rax,400h  
000000013FC010A1  jb          wmain+60h (13FC01060h)  

    QueryPerformanceCounter((LARGE_INTEGER*)&t1);
000000013FC010A3  lea         rcx,[t1]  
000000013FC010A8  call        qword ptr [__imp_QueryPerformanceCounter (13FC02008h)]  

    for(int i = 0; i < 1024 * 1024 * 10; i++){
000000013FC010AE  xor         eax,eax  
        for(int x = 0; x < 1024; x++){
000000013FC010B0  xor         edx,edx  
            var += arrPtr[x];
000000013FC010B2  lea         ecx,[rdx+rdx]  
        for(int x = 0; x < 1024; x++){
000000013FC010B5  inc         edx  
        for(int x = 0; x < 1024; x++){
000000013FC010B7  cmp         edx,200h  
            var += arrPtr[x];
000000013FC010BD  addsd       xmm6,mmword ptr arr[rcx*8]  
000000013FC010C3  addsd       xmm6,mmword ptr [rsp+rcx*8+58h]  
        for(int x = 0; x < 1024; x++){
000000013FC010C9  jb          wmain+0B2h (13FC010B2h)  

    for(int i = 0; i < 1024 * 1024 * 10; i++){
000000013FC010CB  inc         eax  
000000013FC010CD  cmp         eax,0A00000h  
000000013FC010D2  jb          wmain+0B0h (13FC010B0h)  
        }
    }

    QueryPerformanceCounter((LARGE_INTEGER*)&t2);
000000013FC010D4  lea         rcx,[t2]  
000000013FC010D9  call        qword ptr [__imp_QueryPerformanceCounter (13FC02008h)]  

英特尔编译器没有矢量化,32位和最高优化(现在显然是胜利者,大约3秒运行,组装看起来好多了):

00B81088  lea         eax,[t1]  
00B8108C  push        eax  
00B8108D  call        dword ptr [__imp__QueryPerformanceCounter@4 (0B82004h)]  
00B81093  xor         eax,eax  
00B81095  pxor        xmm0,xmm0  
00B81099  movaps      xmm1,xmm0  
        for(int x = 0; x < 1024; x++){
00B8109C  xor         edx,edx  
            var += arrPtr[x];
00B8109E  addpd       xmm0,xmmword ptr arr[edx*8]  
00B810A4  addpd       xmm1,xmmword ptr [esp+edx*8+40h]  
00B810AA  addpd       xmm0,xmmword ptr [esp+edx*8+50h]  
00B810B0  addpd       xmm1,xmmword ptr [esp+edx*8+60h]  
        for(int x = 0; x < 1024; x++){
00B810B6  add         edx,8  
00B810B9  cmp         edx,400h  
00B810BF  jb          wmain+9Eh (0B8109Eh)  

    for(int i = 0; i < 1024 * 1024 * 10; i++){
00B810C1  inc         eax  
00B810C2  cmp         eax,0A00000h  
00B810C7  jb          wmain+9Ch (0B8109Ch)  

    double var = 0; long long freq, t1, t2;
00B810C9  addpd       xmm0,xmm1  
        }
    }

    QueryPerformanceCounter((LARGE_INTEGER*)&t2);
00B810CD  lea         eax,[t2]  
00B810D1  push        eax  
00B810D2  movaps      xmmword ptr [esp+4],xmm0  
00B810D7  call        dword ptr [__imp__QueryPerformanceCounter@4 (0B82004h)]  
00B810DD  movaps      xmm0,xmmword ptr [esp]

7 个答案:

答案 0 :(得分:69)

tl;博士:你在这里看到的似乎是 ICC未能成功完成循环

让我们从MSVC x64开始:

这是关键循环:

$LL3@main:
movsxd  rax, DWORD PTR [rdx-4]
movsxd  rcx, DWORD PTR [rdx-8]
add rdx, 16
add r10, rax
movsxd  rax, DWORD PTR [rdx-16]
add rbx, rcx
add r9, rax
movsxd  rax, DWORD PTR [rdx-12]
add r8, rax
dec r11
jne SHORT $LL3@main

您在此处看到的是编译器展开的标准循环。 MSVC展开4次迭代,并将var变量分为四个寄存器:r10rbxr9r8。然后在循环结束时,将这4个寄存器汇总在一起。

这里重新组合了4个总和:

lea rax, QWORD PTR [r8+r9]
add rax, r10
add rbx, rax
dec rdi
jne SHORT $LL6@main

请注意,MSVC目前不进行自动矢量化。


现在让我们看看你ICC输出的一部分:

000000013F0510A2  movq        xmm2,mmword ptr arr[rcx]  
000000013F0510A8  add         r8,8  
000000013F0510AC  punpckldq   xmm2,xmm2  
000000013F0510B0  add         rcx,20h  
000000013F0510B4  movdqa      xmm3,xmm2  
000000013F0510B8  pand        xmm2,xmm0  
000000013F0510BC  movq        xmm4,mmword ptr [rdx+8]  
000000013F0510C1  psrad       xmm3,1Fh  
000000013F0510C6  punpckldq   xmm4,xmm4  
000000013F0510CA  pand        xmm3,xmm1  
000000013F0510CE  por         xmm3,xmm2  
000000013F0510D2  movdqa      xmm5,xmm4  
000000013F0510D6  movq        xmm2,mmword ptr [rdx+10h]  
000000013F0510DB  psrad       xmm5,1Fh  
000000013F0510E0  punpckldq   xmm2,xmm2  
000000013F0510E4  pand        xmm5,xmm1  
000000013F0510E8  paddq       xmm6,xmm3  

...

您在这里看到的是ICC尝试对此循环进行矢量化。这是以与MSVC类似的方式(分成多个和)完成的,但是使用SSE寄存器而不是每个寄存器有两个和。

但事实证明,矢量化的开销恰好超过了矢量化的好处。

如果我们逐一说明这些说明,我们可以看到ICC如何尝试对其进行矢量化:

//  Load two ints using a 64-bit load.  {x, y, 0, 0}
movq        xmm2,mmword ptr arr[rcx]  

//  Shuffle the data into this form.
punpckldq   xmm2,xmm2           xmm2 = {x, x, y, y}
movdqa      xmm3,xmm2           xmm3 = {x, x, y, y}

//  Mask out index 1 and 3.
pand        xmm2,xmm0           xmm2 = {x, 0, y, 0}

//  Arithmetic right-shift to copy sign-bit across the word.
psrad       xmm3,1Fh            xmm3 = {sign(x), sign(x), sign(y), sign(y)}

//  Mask out index 0 and 2.
pand        xmm3,xmm1           xmm3 = {0, sign(x), 0, sign(y)}

//  Combine to get sign-extended values.
por         xmm3,xmm2           xmm3 = {x, sign(x), y, sign(y)}
                                xmm3 = {x, y}

//  Add to accumulator...
paddq       xmm6,xmm3

所以它正在做一些非常凌乱的解包只是为了矢量化。混乱来自于需要仅使用SSE指令将32位整数符号扩展为64位。

SSE4.1实际上为此提供了PMOVSXDQ指令。但是目标机器不支持SSE4.1,或者ICC在这种情况下不够智能使用它。

但重点是:

英特尔编译器正试图对循环进行矢量化。但是,增加的开销似乎超过了首先将其矢量化的好处。因此,为什么它会变慢。


编辑:使用OP的结果更新:

  • ICC x64 no vectorization
  • 带矢量化的ICC x86

您将数据类型更改为double。所以现在它是浮点数。没有更多丑陋的符号填充变化困扰整数版本。

但是,由于你禁用了x64版本的矢量化,它显然会变慢。

带矢量化的ICC x86:

00B8109E  addpd       xmm0,xmmword ptr arr[edx*8]  
00B810A4  addpd       xmm1,xmmword ptr [esp+edx*8+40h]  
00B810AA  addpd       xmm0,xmmword ptr [esp+edx*8+50h]  
00B810B0  addpd       xmm1,xmmword ptr [esp+edx*8+60h]  
00B810B6  add         edx,8  
00B810B9  cmp         edx,400h  
00B810BF  jb          wmain+9Eh (0B8109Eh)  

这里不多 - 标准矢量化+ 4x循环展开。

没有矢量化的ICC x64:

000000013FC010B2  lea         ecx,[rdx+rdx]  
000000013FC010B5  inc         edx  
000000013FC010B7  cmp         edx,200h  
000000013FC010BD  addsd       xmm6,mmword ptr arr[rcx*8]  
000000013FC010C3  addsd       xmm6,mmword ptr [rsp+rcx*8+58h]  
000000013FC010C9  jb          wmain+0B2h (13FC010B2h)  

无矢量化+仅2x循环展开。

所有条件相同,禁用矢量化会损害此浮点情况下的性能。

答案 1 :(得分:18)

这个例子很简单,不同的语言不应该有所作为,而且愚蠢到不能证明什么。可以通过编译器将循环优化为简单的赋值,或者在整个迭代次数中保持运行,或者可以展开一些迭代......我不确定为什么你决定编写该测试程序,但它不会对语言进行任何测试,因为一旦执行了逻辑优化,它就会归结为完全相同的程序集。

另外,关于intel编译器的性能,它将在很大程度上取决于确切的硬件和编译器版本。编译器生成不同版本的代码,并且倾向于为AMD处理器生成可怕的代码。即使对于英特尔,如果它不能识别特定的处理器,它也会回到安全的慢速模式。

答案 2 :(得分:11)

  

当你消除了不可能的事物时,无论剩下多少不可能,都必须是真理。

一方面你有一些数据,另一方面有一个假设(C ++总是比Java快)。当数据另有说明时,为什么要求人们为你的假设辩护?

如果您希望从JVM获取程序集以比较正在运行的程序集,那么命令行选项为'-XX:+ PrintOptoAssembly',但您需要下载调试jvm才能执行此操作。看一下装配会至少告诉你为什么一个比另一个快。

答案 3 :(得分:6)

仅仅为了记录,我在我的盒子(x86_64 linux),带有std::array的C ++,普通int[1024]上运行了两个代码,并且为了完整性还使用了long代替{ {1}}。 Java(open-jdk 1.6)以3.8s计时,C ++(int)为3.37s,C ++(long)为3.9s。我的编译器是g ++ 4.5.1。也许只是英特尔的编译器并不像想象的那么好。

答案 4 :(得分:0)

我认为Java编译器实现JITC(及时编译,或者一些更新的技术)来接近本机编译器的速度,并且可以推断出你的数组没有改变,因此可以对内部循环应用常量折叠。

答案 5 :(得分:0)

我怀疑罪魁祸首是简单的循环展开。取代

var += arrPtr[x];

var += arrPtr[x++];
var += arrPtr[x++];
var += arrPtr[x++];
var += arrPtr[x];

并观察C ++版本的运行速度。

答案 6 :(得分:0)

我发现你正在运行以下循环

for(int i = 0; i < 1024 * 1024; i++){
        for(int x = 0; x < 1024; x++){
            var += arr[x];
        }
    }

在Java代码中两次;而在c ++代码中; 这可能会带来一个缓存预热,这使得Java代码最终比C ++执行得更快。