MySQL查询优化 - 内部查询

时间:2012-01-08 15:30:25

标签: mysql sql optimization

这是整个查询...

SELECT s.*, (SELECT url FROM show_medias WHERE show_id = s.id AND is_primary = 1) AS media_url
FROM (shows As s)
WHERE `s`.`id` IN (
 SELECT DISTINCT st.show_id
 FROM show_time_schedules AS sts
 LEFT JOIN show_times AS st ON st.id = sts.show_time_id
 WHERE sts.schedule_date BETWEEN CAST('2012-01-10' AS date) AND CAST('2012-01-14' AS date)
 )
AND `s`.`is_active` = 1
ORDER BY s.name asc 

如果...

SELECT url FROM show_medias WHERE show_id = s.id AND is_primary = 1
(0.0004 sec)

和...

 SELECT DISTINCT st.show_id
 FROM show_time_schedules AS sts
 LEFT JOIN show_times AS st ON st.id = sts.show_time_id
 WHERE sts.schedule_date BETWEEN CAST('2012-01-10' AS date) AND CAST('2012-01-14' AS date)
(0.0061 sec)

有明显的原因......

SELECT s.*, (inner query 1) AS media_url
FROM (shows As s)
WHERE `s`.`id` IN ( inner query 2 )
AND `s`.`is_active` = 1
ORDER BY s.name asc

正在使用5.7245 sec

EXPLAIN EXTENDED

id  select_type         table       type    possible_keys   key     key_len ref                     rows    filtered    Extra
1   PRIMARY             s           ALL     NULL            NULL    NULL    NULL                    151     100.00      Using where; Using filesort
3   DEPENDENT SUBQUERY  sts         ALL     NULL            NULL    NULL    NULL                    26290   100.00      Using where; Using temporary
3   DEPENDENT SUBQUERY  st          eq_ref  PRIMARY         PRIMARY 4       bvcdb.sts.show_time_id  1       100.00      Using where
2   DEPENDENT SUBQUERY  show_medias ALL     NULL            NULL    NULL    NULL                    159     100.00      Using where

2 个答案:

答案 0 :(得分:3)

您始终可以使用EXPLAIN or EXPLAIN EXTENDED查看MySql使用查询执行的操作

你也可以用稍微不同的方式编写查询,试试以下内容吗?

SELECT        s.*, 
              sm.url AS media_url 
FROM          shows AS s
INNER JOIN    show_medias AS sm ON s.id = SM.show_id
WHERE `s`.`id` IN ( 
                        SELECT DISTINCT st.show_id 
                        FROM show_time_schedules AS sts 
                        LEFT JOIN show_times AS st ON st.id = sts.show_time_id 
                        WHERE sts.schedule_date BETWEEN CAST('2012-01-10' AS date) AND CAST('2012-01-14' AS date) 
                        ) 
AND            `s`.`is_active` = 1 
AND            sm.is_primary = 1
ORDER BY       s.name asc 

看看它的效果会很有趣。我希望它会更快,因为目前我认为MySql将为你拥有的每个节目运行内部查询1(这样一个查询将运行多次。连接应该更有效。)

如果您想要所有在show_medias中没有行的节目,请使用LEFT JOIN替换INNER JOIN。

编辑:

我很快就会看看您的EXPLAIN EXTENDED,我也想知道您是否想要尝试以下内容;它删除所有子查询:

SELECT        DISTINCT s.*,  
                       sm.url AS media_url  
FROM                   shows AS s 
INNER JOIN             show_medias AS sm ON s.id = SM.show_id
INNER JOIN             show_times AS st ON (s.id = st.show_id)
RIGHT JOIN             show_time_schedules AS sts ON (st.id = sts.show_time_id)

WHERE                  `s`.`is_active` = 1  
AND                    sm.is_primary = 1 
AND                    sts.schedule_date BETWEEN CAST('2012-01-10' AS date) AND CAST('2012-01-14' AS date)  
ORDER BY               s.name asc 

(也可以看看EXPLAIN EXTENDED对你来说很好 - 你可以将它添加到这个评论中。)

进一步编辑:

在您的EXPLAIN EXTENDED(a good start on how to read these is here

USING FILESORT和USING TEMPORARY都是关键指标。希望我推荐的第二个查询应该删除任何TEMPORARY表(在子查询中)。然后尝试关闭ORDER BY以查看是否会产生影响(我们可以将其添加到目前为止的结果中: - )

我还可以看到查询可能在许多索引查找中丢失;所有id列都是索引匹配的主要候选者(通常为index caveats)。我还尝试添加这些索引,然后再次运行EXPLAIN EXTENDED以查看现在的差异(正如我们已经从上面的评论中了解到的那样编辑!)

答案 1 :(得分:2)

这是CTE解决方案:(我的不好,mysql没有CTE,但问题太通用了)

WITH RECURSIVE tree AS (
    SELECT t0.id
        , t0.study_start_time
        , t0.study_end_time
    FROM tab t0
    WHERE NOT EXISTS (SELECT * FROM tab nx
           WHERE nx.id=t0.id 
           AND nx.study_end_time = t0.study_start_time
           )
    UNION
    SELECT tt.id
        ,tt.study_start_time
        ,t1.study_end_time
    FROM tab t1
    JOIN tree tt ON t1.id=tt.id
                AND t1.study_start_time = tt.study_end_time
    )
SELECT * FROM tree
WHERE NOT EXISTS (SELECT * FROM tab nx 
                WHERE nx.id=tree.id
                AND tree.study_end_time = nx.study_start_time
                )
ORDER BY id
    ;

结果:

CREATE TABLE
INSERT 0 15
  id  | study_start_time | study_end_time 
------+------------------+----------------
 1234 |              168 |            480
 2345 |              175 |            233
 2345 |              400 |            425
 4567 |              200 |            225
 4567 |              250 |            289
 4567 |              300 |            310
 4567 |              320 |            340
 4567 |              360 |            390
(8 rows)

QUERY计划(在添加明显的PK和索引之后):

DROP TABLE
NOTICE:  CREATE TABLE / PRIMARY KEY will create implicit index "tab_pkey" for table "tab"
CREATE TABLE
CREATE INDEX
INSERT 0 15

                                                                QUERY PLAN                                                                 
-------------------------------------------------------------------------------------------------------------------------------------------
 Merge Anti Join  (cost=16209.59..16292.13 rows=6386 width=12) (actual time=0.189..0.193 rows=8 loops=1)
   Merge Cond: ((tree.id = nx.id) AND (tree.study_end_time = nx.study_start_time))
   CTE tree
     ->  Recursive Union  (cost=0.00..15348.09 rows=8515 width=12) (actual time=0.022..0.136 rows=15 loops=1)
           ->  Merge Anti Join  (cost=0.00..175.04 rows=1455 width=12) (actual time=0.019..0.041 rows=8 loops=1)
                 Merge Cond: ((t0.id = nx.id) AND (t0.study_start_time = nx.study_end_time))
                 ->  Index Scan using tab_pkey on tab t0  (cost=0.00..77.35 rows=1940 width=12) (actual time=0.010..0.018 rows=15 loops=1)
                 ->  Index Scan using sssss on tab nx  (cost=0.00..77.35 rows=1940 width=8) (actual time=0.003..0.008 rows=14 loops=1)
           ->  Merge Join  (cost=1297.04..1500.28 rows=706 width=12) (actual time=0.010..0.012 rows=1 loops=6)
                 Merge Cond: ((t1.id = tt.id) AND (t1.study_start_time = tt.study_end_time))
                 ->  Index Scan using tab_pkey on tab t1  (cost=0.00..77.35 rows=1940 width=12) (actual time=0.001..0.004 rows=9 loops=6)
                 ->  Sort  (cost=1297.04..1333.42 rows=14550 width=12) (actual time=0.006..0.006 rows=2 loops=6)
                       Sort Key: tt.id, tt.study_end_time
                       Sort Method: quicksort  Memory: 25kB
                       ->  WorkTable Scan on tree tt  (cost=0.00..291.00 rows=14550 width=12) (actual time=0.000..0.001 rows=2 loops=6)
   ->  Sort  (cost=726.15..747.44 rows=8515 width=12) (actual time=0.166..0.169 rows=15 loops=1)
         Sort Key: tree.id, tree.study_end_time
         Sort Method: quicksort  Memory: 25kB
         ->  CTE Scan on tree  (cost=0.00..170.30 rows=8515 width=12) (actual time=0.025..0.149 rows=15 loops=1)
   ->  Sort  (cost=135.34..140.19 rows=1940 width=8) (actual time=0.018..0.018 rows=15 loops=1)
         Sort Key: nx.id, nx.study_start_time
         Sort Method: quicksort  Memory: 25kB
         ->  Seq Scan on tab nx  (cost=0.00..29.40 rows=1940 width=8) (actual time=0.003..0.004 rows=15 loops=1)
 Total runtime: 0.454 ms
(24 rows)