我已经使用SensorManager的加速器示例,其中画布(球)根据设备加速器的旋转更新其位置。这是图像:
如图所示,有一个球和一条线。球的位置经常更新,而线的位置是静态的。
我想让球在接触线时反弹回来。我从3天开始尝试过,但不明白我是怎么做到的。
这是我的代码:
public class ballsensor extends Activity implements SensorEventListener {
// sensor-related
private SensorManager mSensorManager;
private Sensor mAccelerometer;
// animated view
private ShapeView mShapeView;
// screen size
private int mWidthScreen;
private int mHeightScreen;
// motion parameters
private final float FACTOR_FRICTION = 0.5f; // imaginary friction on the
// screen
private final float GRAVITY = 9.8f; // acceleration of gravity
private float mAx; // acceleration along x axis
private float mAy; // acceleration along y axis
private final float mDeltaT = 0.5f; // imaginary time interval between each
// acceleration updates
// timer
private Timer mTimer;
private Handler mHandler;
private boolean isTimerStarted = false;
private long mStart;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
// set the screen always portait
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);
// initializing sensors
mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
mAccelerometer = mSensorManager
.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
// obtain screen width and height
Display display = ((WindowManager) this
.getSystemService(Context.WINDOW_SERVICE)).getDefaultDisplay();
mWidthScreen = display.getWidth();
mHeightScreen = display.getHeight() - 35;
// initializing the view that renders the ball
mShapeView = new ShapeView(this);
mShapeView.setOvalCenter((int) (mWidthScreen * 0.6),
(int) (mHeightScreen * 0.6));
setContentView(mShapeView);
}
@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
}
@Override
public void onSensorChanged(SensorEvent event) {
// obtain the three accelerations from sensors
mAx = event.values[0];
mAy = event.values[1];
float mAz = event.values[2];
// taking into account the frictions
mAx = Math.signum(mAx) * Math.abs(mAx)
* (1 - FACTOR_FRICTION * Math.abs(mAz) / GRAVITY);
mAy = Math.signum(mAy) * Math.abs(mAy)
* (1 - FACTOR_FRICTION * Math.abs(mAz) / GRAVITY);
}
@Override
protected void onResume() {
super.onResume();
// start sensor sensing
mSensorManager.registerListener(this, mAccelerometer,
SensorManager.SENSOR_DELAY_NORMAL);
}
@Override
protected void onPause() {
super.onPause();
// stop senser sensing
mSensorManager.unregisterListener(this);
}
// the view that renders the ball
private class ShapeView extends SurfaceView implements
SurfaceHolder.Callback {
private final int RADIUS = 30;
private final float FACTOR_BOUNCEBACK = 0.50f;
private int mXCenter;
private int mYCenter;
private RectF mRectF;
private final Paint mPaint;
private ShapeThread mThread;
private float mVx;
private float mVy;
public ShapeView(Context context) {
super(context);
getHolder().addCallback(this);
mThread = new ShapeThread(getHolder(), this);
setFocusable(true);
mPaint = new Paint();
mPaint.setColor(0xFFFFFFFF);
mPaint.setAlpha(192);
mPaint.setStyle(Paint.Style.FILL_AND_STROKE);
mPaint.setAntiAlias(true);
mRectF = new RectF();
}
// set the position of the ball
public boolean setOvalCenter(int x, int y) {
mXCenter = x;
mYCenter = y;
return true;
}
// calculate and update the ball's position
public boolean updateOvalCenter() {
mVx -= mAx * mDeltaT;
mVy += mAy * mDeltaT;
System.out.println("mVx is ::" + mVx);
System.out.println("mVy is ::" + mVy);
mXCenter += (int) (mDeltaT * (mVx + 0.6 * mAx * mDeltaT));
mYCenter += (int) (mDeltaT * (mVy + 0.6 * mAy * mDeltaT));
if (mXCenter < RADIUS) {
mXCenter = RADIUS;
mVx = -mVx * FACTOR_BOUNCEBACK;
}
if (mYCenter < RADIUS) {
mYCenter = RADIUS;
mVy = -mVy * FACTOR_BOUNCEBACK;
}
if (mXCenter > mWidthScreen - RADIUS) {
mXCenter = mWidthScreen - RADIUS;
mVx = -mVx * FACTOR_BOUNCEBACK;
}
if (mYCenter > mHeightScreen - 2 * RADIUS) {
mYCenter = mHeightScreen - 2 * RADIUS;
mVy = -mVy * FACTOR_BOUNCEBACK;
}
return true;
}
// update the canvas.
@Override
protected void onDraw(Canvas canvas) {
if (mRectF != null) {
mRectF.set(mXCenter - RADIUS, mYCenter - RADIUS, mXCenter
+ RADIUS, mYCenter + RADIUS);
canvas.drawColor(0XFF000000);
// canvas.drawOval(mRectF, mPaint);
Bitmap kangoo = BitmapFactory.decodeResource(getResources(),
R.drawable.stripe1);
Bitmap ball = BitmapFactory.decodeResource(getResources(),
R.drawable.blackwhiteball);
canvas.drawBitmap(ball, mXCenter - RADIUS, mYCenter - RADIUS,
mPaint);
canvas.drawBitmap(kangoo, 130, 10, null);
}
}
@Override
public void surfaceChanged(SurfaceHolder holder, int format, int width,
int height) {
}
@Override
public void surfaceCreated(SurfaceHolder holder) {
mThread.setRunning(true);
mThread.start();
}
@Override
public void surfaceDestroyed(SurfaceHolder holder) {
boolean retry = true;
mThread.setRunning(false);
while (retry) {
try {
mThread.join();
retry = false;
} catch (InterruptedException e) {
}
}
}
}
class ShapeThread extends Thread {
private SurfaceHolder mSurfaceHolder;
private ShapeView mShapeView;
private boolean mRun = false;
public ShapeThread(SurfaceHolder surfaceHolder, ShapeView shapeView) {
mSurfaceHolder = surfaceHolder;
mShapeView = shapeView;
}
public void setRunning(boolean run) {
mRun = run;
}
public SurfaceHolder getSurfaceHolder() {
return mSurfaceHolder;
}
@Override
public void run() {
Canvas c;
while (mRun) {
mShapeView.updateOvalCenter();
c = null;
try {
c = mSurfaceHolder.lockCanvas(null);
synchronized (mSurfaceHolder) {
mShapeView.onDraw(c);
}
} finally {
if (c != null) {
mSurfaceHolder.unlockCanvasAndPost(c);
}
}
}
}
}
}
答案 0 :(得分:13)
不是尝试修复代码,而是通过开发具有两个组件的软件架构在设计层面工作:物理模型和显示。关键是将问题的物理特性与显示区分开。与显示器分开进行时,物理建模变得更加容易。同样,显示也变得更容易。有两个独立的包 - 一个用于物理,一个用于显示。
从问题的简单版本开始,其中物理世界只有一个点和一条线。模拟从线上反射的点。你有一些代码可以做到这一点。只需将其从当前代码中删除即可。确保物理学能够达到您的预期,而不必担心显示器。
为球设计一个类。球具有速度和位置属性。它有一个移动方法,可以根据一次点击的速度更新位置。移动方法检查它是否与墙相互作用(碰撞)并根据您希望世界拥有的物理变化速度。碰撞检测是通过询问墙壁是否完成来完成的。物理学可以是入射角等于反射角,或者你可以在球上有一个旋转属性来改变球的反弹方式。关键是所有的物理建模都是与显示器分开完成的。同样,您可以为墙创建一个类。最初墙是固定的,但你可以添加移动。好的一点是,如果你设计了球类正确地改变墙壁使其移动不会影响球类的设计。此外,这些物理变化都不会影响显示效果。
制作一个简单地将物理翻译成屏幕上的演示文稿的显示。
从那里可以增加模型的复杂性。将点设为圆。重做物理学以使其适应这种新的复杂性。显示器不会有太大变化,但要将它们分开。
我的CS1类做了同样问题的版本。两年前,我让他们做了一场乒乓球比赛。去年是蜈蚣的一个版本。即将到来的学期他们将突破作为一个项目。当他们将物理模型与显示器分开建模时,他们会将其工作。当他们不这样做时,通常是一团糟。
答案 1 :(得分:1)
物理modyle应在单独的线程中运行,并使用最佳可用时间分辨率进行位置更新。 (毫秒应该足够了)这就是我设计gameloop的方式:
lastFrameTime = System.currentTimeMillis();
// as long as we run we move
while (state == GameState.RUNNING) {
currentFrame++;
timeNow = System.currentTimeMillis();
// sleep until this frame is scheduled
long l = lastFrameTime + FRAME_DELAY - timeNow;
updatePositions();
redraw();
if (l > 0L) {
try {
Thread.sleep(l);
}
catch (Exception exception) {
}
} else {
// something long kept us from updating, reset delays
lastFrameTime = timeNow;
l = FRAME_DELAY;
}
lastFrameTime = timeNow + l;
// be polite, let others play
Thread.yield();
}
放弃对线程的控制非常重要,因为UI任务将处理事件和hive命令到phyiscs引擎。
至于碰撞检测 - 数学非常简单。你的线是垂直的,你必须检查线和中心的x-coord的差异是否小于半径 - 然后反转速度的x-componen
答案 2 :(得分:0)
您可以使用Rect.intersects(Rect,Rect)来检测碰撞。使用位图宽度和高度来设置新的Rects。
这是一个肮脏的例子:
import java.util.Timer;
import android.app.Activity;
import android.content.Context;
import android.content.pm.ActivityInfo;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Rect;
import android.graphics.RectF;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.os.Handler;
import android.view.Display;
import android.view.SurfaceHolder;
import android.view.SurfaceView;
import android.view.WindowManager;
public class ballsensor extends Activity implements SensorEventListener {
// sensor-related
private SensorManager mSensorManager;
private Sensor mAccelerometer;
// animated view
private ShapeView mShapeView;
// screen size
private int mWidthScreen;
private int mHeightScreen;
// motion parameters
private final float FACTOR_FRICTION = 0.5f; // imaginary friction on the
// screen
private final float GRAVITY = 9.8f; // acceleration of gravity
private float mAx; // acceleration along x axis
private float mAy; // acceleration along y axis
private final float mDeltaT = 0.5f; // imaginary time interval between each
// acceleration updates
// timer
private Timer mTimer;
private Handler mHandler;
private final boolean isTimerStarted = false;
private long mStart;
@Override
public void onCreate(final Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
// set the screen always portait
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);
// initializing sensors
mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
mAccelerometer = mSensorManager
.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
// obtain screen width and height
final Display display = ((WindowManager) this
.getSystemService(Context.WINDOW_SERVICE)).getDefaultDisplay();
mWidthScreen = display.getWidth();
mHeightScreen = display.getHeight() - 35;
// initializing the view that renders the ball
mShapeView = new ShapeView(this);
mShapeView.setOvalCenter((int) (mWidthScreen * 0.6),
(int) (mHeightScreen * 0.6));
setContentView(mShapeView);
}
@Override
public void onAccuracyChanged(final Sensor sensor, final int accuracy) {
}
@Override
public void onSensorChanged(final SensorEvent event) {
// obtain the three accelerations from sensors
mAx = event.values[0];
mAy = event.values[1];
final float mAz = event.values[2];
// taking into account the frictions
mAx = Math.signum(mAx) * Math.abs(mAx)
* (1 - FACTOR_FRICTION * Math.abs(mAz) / GRAVITY);
mAy = Math.signum(mAy) * Math.abs(mAy)
* (1 - FACTOR_FRICTION * Math.abs(mAz) / GRAVITY);
}
@Override
protected void onResume() {
super.onResume();
// start sensor sensing
mSensorManager.registerListener(this, mAccelerometer,
SensorManager.SENSOR_DELAY_NORMAL);
}
@Override
protected void onPause() {
super.onPause();
// stop senser sensing
mSensorManager.unregisterListener(this);
}
// the view that renders the ball
private class ShapeView extends SurfaceView implements
SurfaceHolder.Callback {
private final int RADIUS = 30;
private final float FACTOR_BOUNCEBACK = 0.50f;
private int mXCenter;
private int mYCenter;
private final RectF mRectF;
private final Paint mPaint;
private final ShapeThread mThread;
private float mVx;
private float mVy;
private final Rect lineRect = new Rect();
private final Rect ballRect = new Rect();
public ShapeView(final Context context) {
super(context);
getHolder().addCallback(this);
mThread = new ShapeThread(getHolder(), this);
setFocusable(true);
mPaint = new Paint();
mPaint.setColor(0xFFFFFFFF);
mPaint.setAlpha(192);
mPaint.setStyle(Paint.Style.FILL_AND_STROKE);
mPaint.setAntiAlias(true);
mRectF = new RectF();
}
// set the position of the ball
public boolean setOvalCenter(final int x, final int y) {
mXCenter = x;
mYCenter = y;
return true;
}
// calculate and update the ball's position
public boolean updateOvalCenter() {
mVx -= mAx * mDeltaT;
mVy += mAy * mDeltaT;
System.out.println("mVx is ::" + mVx);
System.out.println("mVy is ::" + mVy);
mXCenter += (int) (mDeltaT * (mVx + 0.6 * mAx * mDeltaT));
mYCenter += (int) (mDeltaT * (mVy + 0.6 * mAy * mDeltaT));
if (mXCenter < RADIUS) {
mXCenter = RADIUS;
mVx = -mVx * FACTOR_BOUNCEBACK;
}
if (mYCenter < RADIUS) {
mYCenter = RADIUS;
mVy = -mVy * FACTOR_BOUNCEBACK;
}
if (mXCenter > mWidthScreen - RADIUS) {
mXCenter = mWidthScreen - RADIUS;
mVx = -mVx * FACTOR_BOUNCEBACK;
}
if (mYCenter > mHeightScreen - 2 * RADIUS) {
mYCenter = mHeightScreen - 2 * RADIUS;
mVy = -mVy * FACTOR_BOUNCEBACK;
}
if(Rect.intersects(lineRect, ballRect)){
mVx = -mVx * FACTOR_BOUNCEBACK;
mVy = -mVy * FACTOR_BOUNCEBACK;
mXCenter += (int) (mDeltaT * (mVx + 0.6 * mAx * mDeltaT)) * 5;
mYCenter += (int) (mDeltaT * (mVy + 0.6 * mAy * mDeltaT)) * 5;
}
return true;
}
// update the canvas.
@Override
protected void onDraw(final Canvas canvas) {
if (mRectF != null) {
mRectF.set(mXCenter - RADIUS, mYCenter - RADIUS, mXCenter
+ RADIUS, mYCenter + RADIUS);
canvas.drawColor(0XFF000000);
// canvas.drawOval(mRectF, mPaint);
final Bitmap kangoo = BitmapFactory.decodeResource(getResources(),
R.drawable.blankcard);
lineRect.set(130, 10, 130 + kangoo.getWidth(), 10 + kangoo.getHeight());
final Bitmap ball = BitmapFactory.decodeResource(getResources(),
R.drawable.blankcard);
ballRect.set(mXCenter - RADIUS, mYCenter - RADIUS, mXCenter - RADIUS + ball.getWidth(), mYCenter - RADIUS + ball.getHeight());
canvas.drawBitmap(ball, mXCenter - RADIUS, mYCenter - RADIUS,
mPaint);
canvas.drawBitmap(kangoo, 130, 10, null);
}
}
@Override
public void surfaceChanged(final SurfaceHolder holder, final int format, final int width,
final int height) {
}
@Override
public void surfaceCreated(final SurfaceHolder holder) {
mThread.setRunning(true);
mThread.start();
}
@Override
public void surfaceDestroyed(final SurfaceHolder holder) {
boolean retry = true;
mThread.setRunning(false);
while (retry) {
try {
mThread.join();
retry = false;
} catch (final InterruptedException e) {
}
}
}
}
class ShapeThread extends Thread {
private final SurfaceHolder mSurfaceHolder;
private final ShapeView mShapeView;
private boolean mRun = false;
public ShapeThread(final SurfaceHolder surfaceHolder, final ShapeView shapeView) {
mSurfaceHolder = surfaceHolder;
mShapeView = shapeView;
}
public void setRunning(final boolean run) {
mRun = run;
}
public SurfaceHolder getSurfaceHolder() {
return mSurfaceHolder;
}
@Override
public void run() {
Canvas c;
while (mRun) {
mShapeView.updateOvalCenter();
c = null;
try {
c = mSurfaceHolder.lockCanvas(null);
synchronized (mSurfaceHolder) {
mShapeView.onDraw(c);
}
} finally {
if (c != null) {
mSurfaceHolder.unlockCanvasAndPost(c);
}
}
}
}
}
}
需要改进,但可能会让你走上正轨。