是否有可能在SQL-Query中执行类似的操作?也许提供一个列表作为输入参数? 我想要的日期是连续的,但数据库中并不存在所有日期。如果日期不存在,则结果应为"无"。
dates = [dt.datetime(2008,1,1), dt.datetime(2008,1,2), dt.datetime(2008,1,3), dt.datetime(2008,1,4), dt.datetime(2008,1,5)]
id = "361-442"
result = []
for date in dates:
curs.execute('''SELECT price, date FROM prices where date = ? AND id = ?''', (date, id))
query = curs.fetchall()
if query == []:
result.append([None, arg])
else:
result.append(query)
答案 0 :(得分:5)
要执行sqlite 中的所有工作,您可以使用LEFT JOIN用None
填写缺失的价格:
sql='''
SELECT p.price, t.date
FROM ( {t} ) t
LEFT JOIN price p
ON p.date = t.date
WHERE p.id = ?
'''.format(t=' UNION ALL '.join('SELECT {d!r} date'.format(d=d) for d in date))
cursor.execute(sql,[id])
result=cursor.fetchall()
但是,此解决方案需要在Python中形成一个(可能)巨大的字符串,以便创建一个包含所有所需日期的临时表。它不仅速度慢(包括创建临时表需要sqlite的时间),它也很脆弱:如果len(date)
大于500,那么sqlite会提升
OperationalError: too many terms in compound SELECT
如果您已在其他表格中拥有所有所需日期,则可以解决此问题。然后你可以用上面的丑陋的“UNION ALL”SQL替换
之类的东西SELECT p.price, t.date
FROM ( SELECT date from dates ) t
LEFT JOIN price p
ON p.date = t.date
虽然这是一项改进,但我的timeit测试(见下文)显示,在Python中完成部分工作仍然更快:
在Python中完成部分工作:
如果您知道日期是连续的,因此可以表示为范围,那么:
curs.execute('''
SELECT date, price
FROM prices
WHERE date <= ?
AND date >= ?
AND id = ?''', (max(date), min(date), id))
否则,如果日期是任意的,那么:
sql = '''
SELECT date, price
FROM prices
WHERE date IN ({s})
AND id = ?'''.format(s={','.join(['?']*len(dates))})
curs.execute(sql,dates + [id])
为了形成result
列表,其中None
插入了缺失价格,您可以形成dict
个(date,price)
对,并使用dict.get()
方法至
缺少None
密钥时提供默认值date
:
result = dict(curs.fetchall())
result = [(result.get(d,None), d) for d in date]
注意,要将dict
形成为从日期到价格的映射,我在SQL查询中交换了date
和price
的顺序。
时间测试:
我对这三个函数进行了比较:
def using_sqlite_union():
sql = '''
SELECT p.price, t.date
FROM ( {t} ) t
LEFT JOIN price p
ON p.date = t.date
'''.format(t = ' UNION ALL '.join('SELECT {d!r} date'.format(d = str(d))
for d in dates))
cursor.execute(sql)
return cursor.fetchall()
def using_sqlite_dates():
sql = '''
SELECT p.price, t.date
FROM ( SELECT date from dates ) t
LEFT JOIN price p
ON p.date = t.date
'''
cursor.execute(sql)
return cursor.fetchall()
def using_python_dict():
cursor.execute('''
SELECT date, price
FROM price
WHERE date <= ?
AND date >= ?
''', (max(dates), min(dates)))
result = dict(cursor.fetchall())
result = [(result.get(d,None), d) for d in dates]
return result
N = 500
m = 10
omit = random.sample(range(N), m)
dates = [ datetime.date(2000, 1, 1)+datetime.timedelta(days = i) for i in range(N) ]
rows = [ (d, random.random()) for i, d in enumerate(dates) if i not in omit ]
rows
定义了插入price
表的数据。
Timeit测试结果:
像这样运行timeit:
python -mtimeit -s'import timeit_sqlite_union as t' 't.using_python_dict()'
制作了这些基准:
·────────────────────·────────────────────·
│ using_python_dict │ 1.47 msec per loop │
│ using_sqlite_dates │ 3.39 msec per loop │
│ using_sqlite_union │ 5.69 msec per loop │
·────────────────────·────────────────────·
using_python_dict
比using_sqlite_dates
快约2.3倍。即使我们将总日期数增加到10000,速度比也保持不变:
·────────────────────·────────────────────·
│ using_python_dict │ 32.5 msec per loop │
│ using_sqlite_dates │ 81.5 msec per loop │
·────────────────────·────────────────────·
结论:将所有工作转移到sqlite并不一定更快。