太阳的位置给定时间,经度和纬度

时间:2012-01-03 04:50:34

标签: r math geometry astronomy azimuth

三年多前,before提出了这个问题。给出了答案,但是我在解决方案中发现了一个小故障。

下面的代码在R.我已经将它移植到另一种语言,但是直接在R中测试了原始代码,以确保问题不在我的移植中。

sunPosition <- function(year, month, day, hour=12, min=0, sec=0,
                    lat=46.5, long=6.5) {


  twopi <- 2 * pi
  deg2rad <- pi / 180

  # Get day of the year, e.g. Feb 1 = 32, Mar 1 = 61 on leap years
  month.days <- c(0,31,28,31,30,31,30,31,31,30,31,30)
  day <- day + cumsum(month.days)[month]
  leapdays <- year %% 4 == 0 & (year %% 400 == 0 | year %% 100 != 0) & day >= 60
  day[leapdays] <- day[leapdays] + 1

  # Get Julian date - 2400000
  hour <- hour + min / 60 + sec / 3600 # hour plus fraction
  delta <- year - 1949
  leap <- trunc(delta / 4) # former leapyears
  jd <- 32916.5 + delta * 365 + leap + day + hour / 24

  # The input to the Atronomer's almanach is the difference between
  # the Julian date and JD 2451545.0 (noon, 1 January 2000)
  time <- jd - 51545.

  # Ecliptic coordinates

  # Mean longitude
  mnlong <- 280.460 + .9856474 * time
  mnlong <- mnlong %% 360
  mnlong[mnlong < 0] <- mnlong[mnlong < 0] + 360

  # Mean anomaly
  mnanom <- 357.528 + .9856003 * time
  mnanom <- mnanom %% 360
  mnanom[mnanom < 0] <- mnanom[mnanom < 0] + 360
  mnanom <- mnanom * deg2rad

  # Ecliptic longitude and obliquity of ecliptic
  eclong <- mnlong + 1.915 * sin(mnanom) + 0.020 * sin(2 * mnanom)
  eclong <- eclong %% 360
  eclong[eclong < 0] <- eclong[eclong < 0] + 360
  oblqec <- 23.429 - 0.0000004 * time
  eclong <- eclong * deg2rad
  oblqec <- oblqec * deg2rad

  # Celestial coordinates
  # Right ascension and declination
  num <- cos(oblqec) * sin(eclong)
  den <- cos(eclong)
  ra <- atan(num / den)
  ra[den < 0] <- ra[den < 0] + pi
  ra[den >= 0 & num < 0] <- ra[den >= 0 & num < 0] + twopi
  dec <- asin(sin(oblqec) * sin(eclong))

  # Local coordinates
  # Greenwich mean sidereal time
  gmst <- 6.697375 + .0657098242 * time + hour
  gmst <- gmst %% 24
  gmst[gmst < 0] <- gmst[gmst < 0] + 24.

  # Local mean sidereal time
  lmst <- gmst + long / 15.
  lmst <- lmst %% 24.
  lmst[lmst < 0] <- lmst[lmst < 0] + 24.
  lmst <- lmst * 15. * deg2rad

  # Hour angle
  ha <- lmst - ra
  ha[ha < -pi] <- ha[ha < -pi] + twopi
  ha[ha > pi] <- ha[ha > pi] - twopi

  # Latitude to radians
  lat <- lat * deg2rad

  # Azimuth and elevation
  el <- asin(sin(dec) * sin(lat) + cos(dec) * cos(lat) * cos(ha))
  az <- asin(-cos(dec) * sin(ha) / cos(el))
  elc <- asin(sin(dec) / sin(lat))
  az[el >= elc] <- pi - az[el >= elc]
  az[el <= elc & ha > 0] <- az[el <= elc & ha > 0] + twopi

  el <- el / deg2rad
  az <- az / deg2rad
  lat <- lat / deg2rad

  return(list(elevation=el, azimuth=az))
}

我遇到的问题是它返回的方位角似乎是错误的。例如,如果我在夏令时(南部)夏至时在0ºE和41ºS,3ºS,3ºN和41ºN处运行该功能:

> sunPosition(2012,12,22,12,0,0,-41,0)
$elevation
[1] 72.42113

$azimuth
[1] 180.9211

> sunPosition(2012,12,22,12,0,0,-3,0)
$elevation
[1] 69.57493

$azimuth
[1] -0.79713

Warning message:
In asin(sin(dec)/sin(lat)) : NaNs produced
> sunPosition(2012,12,22,12,0,0,3,0)
$elevation
[1] 63.57538

$azimuth
[1] -0.6250971

Warning message:
In asin(sin(dec)/sin(lat)) : NaNs produced
> sunPosition(2012,12,22,12,0,0,41,0)
$elevation
[1] 25.57642

$azimuth
[1] 180.3084

这些数字似乎不对。我很满意的高度 - 前两个应该大致相同,第三个触摸较低,第四个低得多。然而,第一个方位角大致应该是北方,而它给出的数字完全相反。其余三个应该大致指向南方,但只有最后一个。中间的两个位于北边,再次是180º。

正如您所看到的,低纬度(接近赤道)也会引发一些错误

我认为错误在本节中,错误在第三行触发(从elc开始)。

  # Azimuth and elevation
  el <- asin(sin(dec) * sin(lat) + cos(dec) * cos(lat) * cos(ha))
  az <- asin(-cos(dec) * sin(ha) / cos(el))
  elc <- asin(sin(dec) / sin(lat))
  az[el >= elc] <- pi - az[el >= elc]
  az[el <= elc & ha > 0] <- az[el <= elc & ha > 0] + twopi

我用Google搜索并在C中找到了类似的代码块,转换为R,它用来计算方位角的行就像

az <- atan(sin(ha) / (cos(ha) * sin(lat) - tan(dec) * cos(lat)))

这里的输出似乎朝着正确的方向前进,但是当它被转换回度数时,我无法让它给我正确的答案。

对代码进行修正(怀疑它只是上面的几行),以便计算出正确的方位角,真是太棒了。

6 个答案:

答案 0 :(得分:106)

这似乎是一个重要的主题,所以我发布了一个比典型答案更长的时间:如果这个算法将来被其他人使用,我认为重要的是它伴随着它的文献参考已经衍生出来了。

简答

正如您所指出的那样,您发布的代码在赤道附近或南半球的位置无效。

要解决此问题,只需在原始代码中替换这些行:

elc <- asin(sin(dec) / sin(lat))
az[el >= elc] <- pi - az[el >= elc]
az[el <= elc & ha > 0] <- az[el <= elc & ha > 0] + twopi

用这些:

cosAzPos <- (0 <= sin(dec) - sin(el) * sin(lat))
sinAzNeg <- (sin(az) < 0)
az[cosAzPos & sinAzNeg] <- az[cosAzPos & sinAzNeg] + twopi
az[!cosAzPos] <- pi - az[!cosAzPos]

它应该适用于地球上的任何位置。

讨论

你的例子中的代码几乎逐字地改编自J.J.的1988年的一篇文章。 Michalsky(太阳能,40:227-235)。该文章反过来改进了R. Walraven在1978年的一篇文章中提出的算法(Solar Energy。20:393-397)。据Walraven报道,该方法已经成功使用了几年,可以在加利福尼亚州戴维斯市(38°33'14“N,121°44'17”W)精确定位偏振辐射计。

Michalsky和Walraven的代码都包含重要/致命的错误。特别是,虽然Michalsky的算法在美国大部分地区运作得很好,但是对于附近地区来说,它失败了(正如你所发现的那样)赤道,或南半球。 1989年,J.W。澳大利亚维多利亚州斯宾塞也注意到了同样的事情(太阳能.42(4):353):

  亲爱的先生:

     

Michalsky将计算出的方位角分配给正确的象限(从Walraven派生)的方法在应用于南方(负)纬度时没有给出正确的值。此外,临界高程(elc)的计算将因纬度为零而失败,因为除以零。通过考虑cos(方位角)的符号,可以简单地通过将方位角分配给正确的象限来避免这两个异议。

我对您的代码的编辑是基于Spencer在发布的评论中提出的更正。我只是稍微修改了它们以确保R函数sunPosition()保持“矢量化”(即在点位置的矢量上正常工作,而不是一次需要传递一个点)。

函数sunPosition()

的准确性

为了测试sunPosition()是否正常工作,我将其结果与国家海洋和大气管理局Solar Calculator计算的结果进行了比较。在这两种情况下,太阳位置都计算在2012年夏至南部(12月22日)的正午(中午12点)。所有结果均在0.02度以内。

testPts <- data.frame(lat = c(-41,-3,3, 41), 
                      long = c(0, 0, 0, 0))

# Sun's position as returned by the NOAA Solar Calculator,
NOAA <- data.frame(elevNOAA = c(72.44, 69.57, 63.57, 25.6),
                   azNOAA = c(359.09, 180.79, 180.62, 180.3))

# Sun's position as returned by sunPosition()
sunPos <- sunPosition(year = 2012,
                      month = 12,
                      day = 22,
                      hour = 12,
                      min = 0,
                      sec = 0,
                      lat = testPts$lat,
                      long = testPts$long)

cbind(testPts, NOAA, sunPos)
#   lat long elevNOAA azNOAA elevation  azimuth
# 1 -41    0    72.44 359.09  72.43112 359.0787
# 2  -3    0    69.57 180.79  69.56493 180.7965
# 3   3    0    63.57 180.62  63.56539 180.6247
# 4  41    0    25.60 180.30  25.56642 180.3083

代码中的其他错误

发布的代码中至少还有两个(非常小的)错误。第一个原因是闰年的2月29日和3月1日两者都计入了第61天。第二个错误源于原始文章中的拼写错误,Michalsky在1989年的一篇文章(太阳能.43(5):323)中对其进行了纠正。

此代码块显示有问题的行,注释掉并立即跟着更正后的版本:

# leapdays <- year %% 4 == 0 & (year %% 400 == 0 | year %% 100 != 0) & day >= 60
  leapdays <- year %% 4 == 0 & (year %% 400 == 0 | year %% 100 != 0) & 
              day >= 60 & !(month==2 & day==60)

# oblqec <- 23.429 - 0.0000004 * time
  oblqec <- 23.439 - 0.0000004 * time

更正了sunPosition()

的版本

以上是经过验证的更正代码:

sunPosition <- function(year, month, day, hour=12, min=0, sec=0,
                    lat=46.5, long=6.5) {

    twopi <- 2 * pi
    deg2rad <- pi / 180

    # Get day of the year, e.g. Feb 1 = 32, Mar 1 = 61 on leap years
    month.days <- c(0,31,28,31,30,31,30,31,31,30,31,30)
    day <- day + cumsum(month.days)[month]
    leapdays <- year %% 4 == 0 & (year %% 400 == 0 | year %% 100 != 0) & 
                day >= 60 & !(month==2 & day==60)
    day[leapdays] <- day[leapdays] + 1

    # Get Julian date - 2400000
    hour <- hour + min / 60 + sec / 3600 # hour plus fraction
    delta <- year - 1949
    leap <- trunc(delta / 4) # former leapyears
    jd <- 32916.5 + delta * 365 + leap + day + hour / 24

    # The input to the Atronomer's almanach is the difference between
    # the Julian date and JD 2451545.0 (noon, 1 January 2000)
    time <- jd - 51545.

    # Ecliptic coordinates

    # Mean longitude
    mnlong <- 280.460 + .9856474 * time
    mnlong <- mnlong %% 360
    mnlong[mnlong < 0] <- mnlong[mnlong < 0] + 360

    # Mean anomaly
    mnanom <- 357.528 + .9856003 * time
    mnanom <- mnanom %% 360
    mnanom[mnanom < 0] <- mnanom[mnanom < 0] + 360
    mnanom <- mnanom * deg2rad

    # Ecliptic longitude and obliquity of ecliptic
    eclong <- mnlong + 1.915 * sin(mnanom) + 0.020 * sin(2 * mnanom)
    eclong <- eclong %% 360
    eclong[eclong < 0] <- eclong[eclong < 0] + 360
    oblqec <- 23.439 - 0.0000004 * time
    eclong <- eclong * deg2rad
    oblqec <- oblqec * deg2rad

    # Celestial coordinates
    # Right ascension and declination
    num <- cos(oblqec) * sin(eclong)
    den <- cos(eclong)
    ra <- atan(num / den)
    ra[den < 0] <- ra[den < 0] + pi
    ra[den >= 0 & num < 0] <- ra[den >= 0 & num < 0] + twopi
    dec <- asin(sin(oblqec) * sin(eclong))

    # Local coordinates
    # Greenwich mean sidereal time
    gmst <- 6.697375 + .0657098242 * time + hour
    gmst <- gmst %% 24
    gmst[gmst < 0] <- gmst[gmst < 0] + 24.

    # Local mean sidereal time
    lmst <- gmst + long / 15.
    lmst <- lmst %% 24.
    lmst[lmst < 0] <- lmst[lmst < 0] + 24.
    lmst <- lmst * 15. * deg2rad

    # Hour angle
    ha <- lmst - ra
    ha[ha < -pi] <- ha[ha < -pi] + twopi
    ha[ha > pi] <- ha[ha > pi] - twopi

    # Latitude to radians
    lat <- lat * deg2rad

    # Azimuth and elevation
    el <- asin(sin(dec) * sin(lat) + cos(dec) * cos(lat) * cos(ha))
    az <- asin(-cos(dec) * sin(ha) / cos(el))

    # For logic and names, see Spencer, J.W. 1989. Solar Energy. 42(4):353
    cosAzPos <- (0 <= sin(dec) - sin(el) * sin(lat))
    sinAzNeg <- (sin(az) < 0)
    az[cosAzPos & sinAzNeg] <- az[cosAzPos & sinAzNeg] + twopi
    az[!cosAzPos] <- pi - az[!cosAzPos]

    # if (0 < sin(dec) - sin(el) * sin(lat)) {
    #     if(sin(az) < 0) az <- az + twopi
    # } else {
    #     az <- pi - az
    # }


    el <- el / deg2rad
    az <- az / deg2rad
    lat <- lat / deg2rad

    return(list(elevation=el, azimuth=az))
}

的参考文献:

Michalsky,J.J。 1988.天文年历的近似太阳位置算法(1950-2050)。太阳能。 40(3):227-235

Michalsky,J.J。 1989.勘误表。太阳能。 43(5):323

Spencer,J.W。 1989年。关于“天文年历近似太阳位置算法(1950-2050)”的评论。太阳能。 42(4):353

Walraven,R。1978.计算太阳的位置。太阳能。 20:393-397

答案 1 :(得分:19)

使用上面某个链接中的“NOAA Solar Calculations”,我通过使用一种略有不同的算法改变了函数的最后部分,我希望这种算法能够无误地翻译。我已经注释掉了现在没用的代码,并在纬度到弧度转换之后添加了新算法:

# -----------------------------------------------
# New code
# Solar zenith angle
zenithAngle <- acos(sin(lat) * sin(dec) + cos(lat) * cos(dec) * cos(ha))
# Solar azimuth
az <- acos(((sin(lat) * cos(zenithAngle)) - sin(dec)) / (cos(lat) * sin(zenithAngle)))
rm(zenithAngle)
# -----------------------------------------------

# Azimuth and elevation
el <- asin(sin(dec) * sin(lat) + cos(dec) * cos(lat) * cos(ha))
#az <- asin(-cos(dec) * sin(ha) / cos(el))
#elc <- asin(sin(dec) / sin(lat))
#az[el >= elc] <- pi - az[el >= elc]
#az[el <= elc & ha > 0] <- az[el <= elc & ha > 0] + twopi

el <- el / deg2rad
az <- az / deg2rad
lat <- lat / deg2rad

# -----------------------------------------------
# New code
if (ha > 0) az <- az + 180 else az <- 540 - az
az <- az %% 360
# -----------------------------------------------

return(list(elevation=el, azimuth=az))

要验证您提到的四种情况中的方位角趋势,请将其与一天中的时间进行对比:

hour <- seq(from = 0, to = 23, by = 0.5)
azimuth <- data.frame(hour = hour)
az41S <- apply(azimuth, 1, function(x) sunPosition(2012,12,22,x,0,0,-41,0)$azimuth)
az03S <- apply(azimuth, 1, function(x) sunPosition(2012,12,22,x,0,0,-03,0)$azimuth)
az03N <- apply(azimuth, 1, function(x) sunPosition(2012,12,22,x,0,0,03,0)$azimuth)
az41N <- apply(azimuth, 1, function(x) sunPosition(2012,12,22,x,0,0,41,0)$azimuth)
azimuth <- cbind(azimuth, az41S, az03S, az41N, az03N)
rm(az41S, az03S, az41N, az03N)
library(ggplot2)
azimuth.plot <- melt(data = azimuth, id.vars = "hour")
ggplot(aes(x = hour, y = value, color = variable), data = azimuth.plot) + 
    geom_line(size = 2) + 
    geom_vline(xintercept = 12) + 
    facet_wrap(~ variable)

附图:

enter image description here

答案 2 :(得分:12)

这是一个重写,它更加惯用于R,更容易调试和维护。这基本上是Josh的答案,但是使用Josh和Charlie的算法计算方位角进行比较。我还从其他答案中包含了对日期代码的简化。基本原则是将代码分成许多较小的函数,您可以更轻松地编写单元测试。

astronomersAlmanacTime <- function(x)
{
  # Astronomer's almanach time is the number of 
  # days since (noon, 1 January 2000)
  origin <- as.POSIXct("2000-01-01 12:00:00")
  as.numeric(difftime(x, origin, units = "days"))
}

hourOfDay <- function(x)
{
  x <- as.POSIXlt(x)
  with(x, hour + min / 60 + sec / 3600)
}

degreesToRadians <- function(degrees)
{
  degrees * pi / 180
}

radiansToDegrees <- function(radians)
{
  radians * 180 / pi
}

meanLongitudeDegrees <- function(time)
{
  (280.460 + 0.9856474 * time) %% 360
}

meanAnomalyRadians <- function(time)
{
  degreesToRadians((357.528 + 0.9856003 * time) %% 360)
}

eclipticLongitudeRadians <- function(mnlong, mnanom)
{
  degreesToRadians(
      (mnlong + 1.915 * sin(mnanom) + 0.020 * sin(2 * mnanom)) %% 360
  )
}

eclipticObliquityRadians <- function(time)
{
  degreesToRadians(23.439 - 0.0000004 * time)
}

rightAscensionRadians <- function(oblqec, eclong)
{
  num <- cos(oblqec) * sin(eclong)
  den <- cos(eclong)
  ra <- atan(num / den)
  ra[den < 0] <- ra[den < 0] + pi
  ra[den >= 0 & num < 0] <- ra[den >= 0 & num < 0] + 2 * pi 
  ra
}

rightDeclinationRadians <- function(oblqec, eclong)
{
  asin(sin(oblqec) * sin(eclong))
}

greenwichMeanSiderealTimeHours <- function(time, hour)
{
  (6.697375 + 0.0657098242 * time + hour) %% 24
}

localMeanSiderealTimeRadians <- function(gmst, long)
{
  degreesToRadians(15 * ((gmst + long / 15) %% 24))
}

hourAngleRadians <- function(lmst, ra)
{
  ((lmst - ra + pi) %% (2 * pi)) - pi
}

elevationRadians <- function(lat, dec, ha)
{
  asin(sin(dec) * sin(lat) + cos(dec) * cos(lat) * cos(ha))
}

solarAzimuthRadiansJosh <- function(lat, dec, ha, el)
{
  az <- asin(-cos(dec) * sin(ha) / cos(el))
  cosAzPos <- (0 <= sin(dec) - sin(el) * sin(lat))
  sinAzNeg <- (sin(az) < 0)
  az[cosAzPos & sinAzNeg] <- az[cosAzPos & sinAzNeg] + 2 * pi
  az[!cosAzPos] <- pi - az[!cosAzPos]
  az
}

solarAzimuthRadiansCharlie <- function(lat, dec, ha)
{
  zenithAngle <- acos(sin(lat) * sin(dec) + cos(lat) * cos(dec) * cos(ha))
  az <- acos((sin(lat) * cos(zenithAngle) - sin(dec)) / (cos(lat) * sin(zenithAngle)))
  ifelse(ha > 0, az + pi, 3 * pi - az) %% (2 * pi)
}

sunPosition <- function(when = Sys.time(), format, lat = 46.5, long = 6.5) 
{    
  if(is.character(when)) when <- strptime(when, format)
  when <- lubridate::with_tz(when, "UTC")
  time <- astronomersAlmanacTime(when)
  hour <- hourOfDay(when)

  # Ecliptic coordinates  
  mnlong <- meanLongitudeDegrees(time)   
  mnanom <- meanAnomalyRadians(time)  
  eclong <- eclipticLongitudeRadians(mnlong, mnanom)     
  oblqec <- eclipticObliquityRadians(time)

  # Celestial coordinates
  ra <- rightAscensionRadians(oblqec, eclong)
  dec <- rightDeclinationRadians(oblqec, eclong)

  # Local coordinates
  gmst <- greenwichMeanSiderealTimeHours(time, hour)  
  lmst <- localMeanSiderealTimeRadians(gmst, long)

  # Hour angle
  ha <- hourAngleRadians(lmst, ra)

  # Latitude to radians
  lat <- degreesToRadians(lat)

  # Azimuth and elevation
  el <- elevationRadians(lat, dec, ha)
  azJ <- solarAzimuthRadiansJosh(lat, dec, ha, el)
  azC <- solarAzimuthRadiansCharlie(lat, dec, ha)

  data.frame(
      elevation = radiansToDegrees(el), 
      azimuthJ  = radiansToDegrees(azJ),
      azimuthC  = radiansToDegrees(azC)
  )
}

答案 3 :(得分:10)

这是对乔希出色答案的建议更新。

该函数的大部分启动是用于计算自2000年1月1日中午以来的天数的样板代码。使用R的现有日期和时间函数可以更好地处理。

我还认为,不是指定六个不同的变量来指定日期和时间,而是指定现有日期对象或日期字符串+格式字符串更容易(并且与其他R函数更一致)。

这是两个辅助函数

astronomers_almanac_time <- function(x)
{
  origin <- as.POSIXct("2000-01-01 12:00:00")
  as.numeric(difftime(x, origin, units = "days"))
}

hour_of_day <- function(x)
{
  x <- as.POSIXlt(x)
  with(x, hour + min / 60 + sec / 3600)
}

现在该功能的开始简化为

sunPosition <- function(when = Sys.time(), format, lat=46.5, long=6.5) {

  twopi <- 2 * pi
  deg2rad <- pi / 180

  if(is.character(when)) when <- strptime(when, format)
  time <- astronomers_almanac_time(when)
  hour <- hour_of_day(when)
  #...

另一个奇怪的是像

这样的行
mnlong[mnlong < 0] <- mnlong[mnlong < 0] + 360

由于mnlong已经%%调用了它的值,因此它们都应该是非负的,所以这一行是多余的。

答案 4 :(得分:4)

我在Python项目中需要太阳位置。我采用了Josh O&#39; Brien的算法。

谢谢Josh。

如果它对任何人都有用,请参考我的改编。

请注意,我的项目只需要即时太阳位置,因此时间不是参数。

def sunPosition(lat=46.5, long=6.5):

    # Latitude [rad]
    lat_rad = math.radians(lat)

    # Get Julian date - 2400000
    day = time.gmtime().tm_yday
    hour = time.gmtime().tm_hour + \
           time.gmtime().tm_min/60.0 + \
           time.gmtime().tm_sec/3600.0
    delta = time.gmtime().tm_year - 1949
    leap = delta / 4
    jd = 32916.5 + delta * 365 + leap + day + hour / 24

    # The input to the Atronomer's almanach is the difference between
    # the Julian date and JD 2451545.0 (noon, 1 January 2000)
    t = jd - 51545

    # Ecliptic coordinates

    # Mean longitude
    mnlong_deg = (280.460 + .9856474 * t) % 360

    # Mean anomaly
    mnanom_rad = math.radians((357.528 + .9856003 * t) % 360)

    # Ecliptic longitude and obliquity of ecliptic
    eclong = math.radians((mnlong_deg + 
                           1.915 * math.sin(mnanom_rad) + 
                           0.020 * math.sin(2 * mnanom_rad)
                          ) % 360)
    oblqec_rad = math.radians(23.439 - 0.0000004 * t)

    # Celestial coordinates
    # Right ascension and declination
    num = math.cos(oblqec_rad) * math.sin(eclong)
    den = math.cos(eclong)
    ra_rad = math.atan(num / den)
    if den < 0:
        ra_rad = ra_rad + math.pi
    elif num < 0:
        ra_rad = ra_rad + 2 * math.pi
    dec_rad = math.asin(math.sin(oblqec_rad) * math.sin(eclong))

    # Local coordinates
    # Greenwich mean sidereal time
    gmst = (6.697375 + .0657098242 * t + hour) % 24
    # Local mean sidereal time
    lmst = (gmst + long / 15) % 24
    lmst_rad = math.radians(15 * lmst)

    # Hour angle (rad)
    ha_rad = (lmst_rad - ra_rad) % (2 * math.pi)

    # Elevation
    el_rad = math.asin(
        math.sin(dec_rad) * math.sin(lat_rad) + \
        math.cos(dec_rad) * math.cos(lat_rad) * math.cos(ha_rad))

    # Azimuth
    az_rad = math.asin(
        - math.cos(dec_rad) * math.sin(ha_rad) / math.cos(el_rad))

    if (math.sin(dec_rad) - math.sin(el_rad) * math.sin(lat_rad) < 0):
        az_rad = math.pi - az_rad
    elif (math.sin(az_rad) < 0):
        az_rad += 2 * math.pi

    return el_rad, az_rad

答案 5 :(得分:1)

我遇到了数据点和数据点的轻微问题。 Richie Cotton的功能(在Charlie的代码实现中)

longitude= 176.0433687000000020361767383292317390441894531250
latitude= -39.173830619999996827118593500927090644836425781250
event_time = as.POSIXct("2013-10-24 12:00:00", format="%Y-%m-%d %H:%M:%S", tz = "UTC")
sunPosition(when=event_time, lat = latitude, long = longitude)
elevation azimuthJ azimuthC
1 -38.92275      180      NaN
Warning message:
In acos((sin(lat) * cos(zenithAngle) - sin(dec))/(cos(lat) * sin(zenithAngle))) : NaNs produced

因为在solarAzimuthRadiansCharlie函数中,在180度角附近存在浮点兴奋,使得(sin(lat) * cos(zenithAngle) - sin(dec)) / (cos(lat) * sin(zenithAngle))是最小的数量,超过1,10000000000000004440892098,其产生NaN,因为acos的输入不应高于1或低于-1。

我怀疑Josh的计算可能存在类似的边缘情况,其中浮点舍入效应导致asin步的输入超出-1:1,但我没有在我的特定数据集中点击它们。

在我打了半打的情况下,“真实”(白天或晚上)是问题发生的时候,因此根据经验,真实值应为1 / -1。出于这个原因,我可以通过在solarAzimuthRadiansJoshsolarAzimuthRadiansCharlie内应用舍入步骤来解决这个问题。我不确定NOAA算法的理论精度是什么(数值精度无论如何都会停止重要),但是舍入到12位小数将数据固定在我的数据集中。