我使用fftw库(fftw3.a
,fftw3.lib
)在Linux和Windows中编写了两个相同的程序,并计算fftwf_execute(m_wfpFFTplan)
语句的持续时间(16-fft)。
10000次运行:
我很困惑为什么在Windows上这比在Linux上快9倍。
处理器:Intel(R)Core(TM)i7 CPU 870 @ 2.93GHz
每个操作系统(Windows XP 32位和Linux OpenSUSE 11.4 32位)都安装在同一台计算机上。
我从互联网上下载了fftw.lib(对于Windows)并且不知道这些配置。一旦我使用此配置构建FFTW:
/configure --enable-float --enable-threads --with-combined-threads --disable-fortran --with-slow-timer --enable-sse --enable-sse2 --enable-avx
Linux中的导致lib比默认配置(0.4 ms)快四倍。
答案 0 :(得分:7)
16 FFT非常小。您会发现小于64的FFT将是硬编码汇编程序,没有循环以获得最高性能。这意味着它们非常容易受到指令集,编译器优化,甚至64或32位字的变化的影响。
当您运行从16开始的FFT大小测试时会发生什么? 1048576在2的权力?我说这是因为Linux上特定的硬编码asm例程可能不是最适合您机器的例程,而对于特定大小的Windows实现可能是幸运的。对此范围内的所有大小进行比较,可以更好地指示Linux与Windows的性能。
你校准过FFTW吗?首次运行时,FFTW会猜测每台机器的最快实现,但是如果您有特殊的指令集,或特定大小的缓存或其他处理器功能,那么这些可能会对执行速度产生巨大影响。因此,执行校准将测试各种FFT例程的速度,并为特定硬件选择最快的每个尺寸。校准涉及重复计算计划并保存生成的FFTW“Wisdom”文件。然后可以重新使用保存的校准数据(这是一个漫长的过程)。我建议您在软件启动时再执行一次,并且每次都重新使用该文件。校准后,我注意到某些尺寸的性能提升了4-10倍!
以下是我用于校准某些尺寸的FFTW的代码片段。请注意,此代码是从我工作的DSP库中逐字粘贴的,因此某些函数调用特定于我的库。我希望FFTW特定的调用很有帮助。
// Calibration FFTW
void DSP::forceCalibration(void)
{
// Try to import FFTw Wisdom for fast plan creation
FILE *fftw_wisdom = fopen("DSPDLL.ftw", "r");
// If wisdom does not exist, ask user to calibrate
if (fftw_wisdom == 0)
{
int iStatus2 = AfxMessageBox("FFTw not calibrated on this machine."\
"Would you like to perform a one-time calibration?\n\n"\
"Note:\tMay take 40 minutes (on P4 3GHz), but speeds all subsequent FFT-based filtering & convolution by up to 100%.\n"\
"\tResults are saved to disk (DSPDLL.ftw) and need only be performed once per machine.\n\n"\
"\tMAKE SURE YOU REALLY WANT TO DO THIS, THERE IS NO WAY TO CANCEL CALIBRATION PART-WAY!",
MB_YESNO | MB_ICONSTOP, 0);
if (iStatus2 == IDYES)
{
// Perform calibration for all powers of 2 from 8 to 4194304
// (most heavily used FFTs - for signal processing)
AfxMessageBox("About to perform calibration.\n"\
"Close all programs, turn off your screensaver and do not move the mouse in this time!\n"\
"Note:\tThis program will appear to be unresponsive until the calibration ends.\n\n"
"\tA MESSAGEBOX WILL BE SHOWN ONCE THE CALIBRATION IS COMPLETE.\n");
startTimer();
// Create a whole load of FFTw Plans (wisdom accumulates automatically)
for (int i = 8; i <= 4194304; i *= 2)
{
// Create new buffers and fill
DSP::cFFTin = new fftw_complex[i];
DSP::cFFTout = new fftw_complex[i];
DSP::fconv_FULL_Real_FFT_rdat = new double[i];
DSP::fconv_FULL_Real_FFT_cdat = new fftw_complex[(i/2)+1];
for(int j = 0; j < i; j++)
{
DSP::fconv_FULL_Real_FFT_rdat[j] = j;
DSP::cFFTin[j][0] = j;
DSP::cFFTin[j][1] = j;
DSP::cFFTout[j][0] = 0.0;
DSP::cFFTout[j][1] = 0.0;
}
// Create a plan for complex FFT.
// Use the measure flag to get the best possible FFT for this size
// FFTw "remembers" which FFTs were the fastest during this test.
// at the end of the test, the results are saved to disk and re-used
// upon every initialisation of the DSP Library
DSP::pCF = fftw_plan_dft_1d
(i, DSP::cFFTin, DSP::cFFTout, FFTW_FORWARD, FFTW_MEASURE);
// Destroy the plan
fftw_destroy_plan(DSP::pCF);
// Create a plan for real forward FFT
DSP::pCF = fftw_plan_dft_r2c_1d
(i, fconv_FULL_Real_FFT_rdat, fconv_FULL_Real_FFT_cdat, FFTW_MEASURE);
// Destroy the plan
fftw_destroy_plan(DSP::pCF);
// Create a plan for real inverse FFT
DSP::pCF = fftw_plan_dft_c2r_1d
(i, fconv_FULL_Real_FFT_cdat, fconv_FULL_Real_FFT_rdat, FFTW_MEASURE);
// Destroy the plan
fftw_destroy_plan(DSP::pCF);
// Destroy the buffers. Repeat for each size
delete [] DSP::cFFTin;
delete [] DSP::cFFTout;
delete [] DSP::fconv_FULL_Real_FFT_rdat;
delete [] DSP::fconv_FULL_Real_FFT_cdat;
}
double time = stopTimer();
char * strOutput;
strOutput = (char*) malloc (100);
sprintf(strOutput, "DSP.DLL Calibration complete in %d minutes, %d seconds\n"\
"Please keep a copy of the DSPDLL.ftw file in the root directory of your application\n"\
"to avoid re-calibration in the future\n", (int)time/(int)60, (int)time%(int)60);
AfxMessageBox(strOutput);
isCalibrated = 1;
// Save accumulated wisdom
char * strWisdom = fftw_export_wisdom_to_string();
FILE *fftw_wisdomsave = fopen("DSPDLL.ftw", "w");
fprintf(fftw_wisdomsave, "%s", strWisdom);
fclose(fftw_wisdomsave);
DSP::pCF = NULL;
DSP::cFFTin = NULL;
DSP::cFFTout = NULL;
fconv_FULL_Real_FFT_cdat = NULL;
fconv_FULL_Real_FFT_rdat = NULL;
free(strOutput);
}
}
else
{
// obtain file size.
fseek (fftw_wisdom , 0 , SEEK_END);
long lSize = ftell (fftw_wisdom);
rewind (fftw_wisdom);
// allocate memory to contain the whole file.
char * strWisdom = (char*) malloc (lSize);
// copy the file into the buffer.
fread (strWisdom,1,lSize,fftw_wisdom);
// import the buffer to fftw wisdom
fftw_import_wisdom_from_string(strWisdom);
fclose(fftw_wisdom);
free(strWisdom);
isCalibrated = 1;
return;
}
}
秘诀是使用FFTW_MEASURE标志创建计划,该标志专门测量数百个例程,以便为您的特定类型的FFT(真实,复杂,1D,2D)和大小找到最快的:
DSP::pCF = fftw_plan_dft_1d (i, DSP::cFFTin, DSP::cFFTout,
FFTW_FORWARD, FFTW_MEASURE);
最后,所有基准测试也应该在执行之外的单个FFT计划阶段执行,从在发布模式下编译的代码调用,并在调试器上进行优化和分离。基准测试应该在具有数千(甚至数百万)次迭代的循环中执行,然后采用平均运行时间来计算结果。您可能知道规划阶段需要花费大量时间,并且执行设计为使用单个计划多次执行。