为什么Windows上的FFTW比Linux更快?

时间:2011-12-31 08:21:51

标签: linux windows performance fft fftw

我使用fftw库(fftw3.afftw3.lib)在Linux和Windows中编写了两个相同的程序,并计算fftwf_execute(m_wfpFFTplan)语句的持续时间(16-fft)。

10000次运行:

  • 在Linux上:平均时间为0.9
  • 在Windows上:平均时间为0.12

我很困惑为什么在Windows上这比在Linux上快9倍。

处理器:Intel(R)Core(TM)i7 CPU 870 @ 2.93GHz

每个操作系统(Windows XP 32位和Linux OpenSUSE 11.4 32位)都安装在同一台计算机上。

我从互联网上下载了fftw.lib(对于Windows)并且不知道这些配置。一旦我使用此配置构建FFTW:

/configure --enable-float  --enable-threads --with-combined-threads  --disable-fortran  --with-slow-timer  --enable-sse  --enable-sse2  --enable-avx   
Linux中的

导致lib比默认配置(0.4 ms)快四倍。

1 个答案:

答案 0 :(得分:7)

16 FFT非常小。您会发现小于64的FFT将是硬编码汇编程序,没有循环以获得最高性能。这意味着它们非常容易受到指令集,编译器优化,甚至64或32位字的变化的影响。

当您运行从16开始的FFT大小测试时会发生什么? 1048576在2的权力?我说这是因为Linux上特定的硬编码asm例程可能不是最适合您机器的例程,而对于特定大小的Windows实现可能是幸运的。对此范围内的所有大小进行比较,可以更好地指示Linux与Windows的性能。

你校准过FFTW吗?首次运行时,FFTW会猜测每台机器的最快实现,但是如果您有特殊的指令集,或特定大小的缓存或其他处理器功能,那么这些可能会对执行速度产生巨大影响。因此,执行校准将测试各种FFT例程的速度,并为特定硬件选择最快的每个尺寸。校准涉及重复计算计划并保存生成的FFTW“Wisdom”文件。然后可以重新使用保存的校准数据(这是一个漫长的过程)。我建议您在软件启动时再执行一次,并且每次都重新使用该文件。校准后,我注意到某些尺寸的性能提升了4-10倍!

以下是我用于校准某些尺寸的FFTW的代码片段。请注意,此代码是从我工作的DSP库中逐字粘贴的,因此某些函数调用特定于我的库。我希望FFTW特定的调用很有帮助。

// Calibration FFTW
void DSP::forceCalibration(void)
{
// Try to import FFTw Wisdom for fast plan creation
FILE *fftw_wisdom = fopen("DSPDLL.ftw", "r");

// If wisdom does not exist, ask user to calibrate
if (fftw_wisdom == 0)
{
    int iStatus2 = AfxMessageBox("FFTw not calibrated on this machine."\
        "Would you like to perform a one-time calibration?\n\n"\
        "Note:\tMay take 40 minutes (on P4 3GHz), but speeds all subsequent FFT-based filtering & convolution by up to 100%.\n"\
        "\tResults are saved to disk (DSPDLL.ftw) and need only be performed once per machine.\n\n"\
        "\tMAKE SURE YOU REALLY WANT TO DO THIS, THERE IS NO WAY TO CANCEL CALIBRATION PART-WAY!", 
        MB_YESNO | MB_ICONSTOP, 0);

    if (iStatus2 == IDYES)
    {
        // Perform calibration for all powers of 2 from 8 to 4194304
        // (most heavily used FFTs - for signal processing)
        AfxMessageBox("About to perform calibration.\n"\
            "Close all programs, turn off your screensaver and do not move the mouse in this time!\n"\
            "Note:\tThis program will appear to be unresponsive until the calibration ends.\n\n"
            "\tA MESSAGEBOX WILL BE SHOWN ONCE THE CALIBRATION IS COMPLETE.\n");
        startTimer();

        // Create a whole load of FFTw Plans (wisdom accumulates automatically)
        for (int i = 8; i <= 4194304; i *= 2)
        {
            // Create new buffers and fill
            DSP::cFFTin = new fftw_complex[i];
            DSP::cFFTout = new fftw_complex[i];
            DSP::fconv_FULL_Real_FFT_rdat = new double[i];
            DSP::fconv_FULL_Real_FFT_cdat = new fftw_complex[(i/2)+1];
            for(int j = 0; j < i; j++)
            {
                DSP::fconv_FULL_Real_FFT_rdat[j] = j;
                DSP::cFFTin[j][0] = j;
                DSP::cFFTin[j][1] = j;
                DSP::cFFTout[j][0] = 0.0;
                DSP::cFFTout[j][1] = 0.0;
            }

            // Create a plan for complex FFT.
            // Use the measure flag to get the best possible FFT for this size
            // FFTw "remembers" which FFTs were the fastest during this test. 
            // at the end of the test, the results are saved to disk and re-used
            // upon every initialisation of the DSP Library
            DSP::pCF = fftw_plan_dft_1d
                (i, DSP::cFFTin, DSP::cFFTout, FFTW_FORWARD, FFTW_MEASURE);

            // Destroy the plan
            fftw_destroy_plan(DSP::pCF);

            // Create a plan for real forward FFT
            DSP::pCF = fftw_plan_dft_r2c_1d
                (i, fconv_FULL_Real_FFT_rdat, fconv_FULL_Real_FFT_cdat, FFTW_MEASURE);

            // Destroy the plan
            fftw_destroy_plan(DSP::pCF);

            // Create a plan for real inverse FFT
            DSP::pCF = fftw_plan_dft_c2r_1d
                (i, fconv_FULL_Real_FFT_cdat, fconv_FULL_Real_FFT_rdat, FFTW_MEASURE);

            // Destroy the plan
            fftw_destroy_plan(DSP::pCF);

            // Destroy the buffers. Repeat for each size
            delete [] DSP::cFFTin;
            delete [] DSP::cFFTout;
            delete [] DSP::fconv_FULL_Real_FFT_rdat;
            delete [] DSP::fconv_FULL_Real_FFT_cdat;
        }

        double time = stopTimer();

        char * strOutput;
        strOutput = (char*) malloc (100);
        sprintf(strOutput, "DSP.DLL Calibration complete in %d minutes, %d seconds\n"\
            "Please keep a copy of the DSPDLL.ftw file in the root directory of your application\n"\
            "to avoid re-calibration in the future\n", (int)time/(int)60, (int)time%(int)60);
        AfxMessageBox(strOutput);

        isCalibrated = 1;

        // Save accumulated wisdom
        char * strWisdom = fftw_export_wisdom_to_string();  
        FILE *fftw_wisdomsave = fopen("DSPDLL.ftw", "w");
        fprintf(fftw_wisdomsave, "%s", strWisdom);

        fclose(fftw_wisdomsave);
        DSP::pCF = NULL;
        DSP::cFFTin = NULL;
        DSP::cFFTout = NULL;
        fconv_FULL_Real_FFT_cdat = NULL;
        fconv_FULL_Real_FFT_rdat = NULL;
        free(strOutput);
    }
}
else 
{
    // obtain file size.
    fseek (fftw_wisdom , 0 , SEEK_END);
    long lSize = ftell (fftw_wisdom);
    rewind (fftw_wisdom);

    // allocate memory to contain the whole file.
    char * strWisdom = (char*) malloc (lSize);

    // copy the file into the buffer.
    fread (strWisdom,1,lSize,fftw_wisdom);

    // import the buffer to fftw wisdom
    fftw_import_wisdom_from_string(strWisdom);

    fclose(fftw_wisdom);
    free(strWisdom);

    isCalibrated = 1;

    return;
}
}

秘诀是使用FFTW_MEASURE标志创建计划,该标志专门测量数百个例程,以便为您的特定类型的FFT(真实,复杂,1D,2D)和大小找到最快的:

DSP::pCF = fftw_plan_dft_1d (i, DSP::cFFTin, DSP::cFFTout, 
   FFTW_FORWARD, FFTW_MEASURE);

最后,所有基准测试也应该在执行之外的单个FFT计划阶段执行,从在发布模式下编译的代码调用,并在调试器上进行优化和分离。基准测试应该在具有数千(甚至数百万)次迭代的循环中执行,然后采用平均运行时间来计算结果。您可能知道规划阶段需要花费大量时间,并且执行设计为使用单个计划多次执行。