假设我有这个:
[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
并通过搜索“Pam”作为名称,我想检索相关词典:{name: "Pam", age: 7}
如何实现这一目标?
答案 0 :(得分:368)
您可以使用generator expression:
>>> dicts = [
... { "name": "Tom", "age": 10 },
... { "name": "Mark", "age": 5 },
... { "name": "Pam", "age": 7 },
... { "name": "Dick", "age": 12 }
... ]
>>> next(item for item in dicts if item["name"] == "Pam")
{'age': 7, 'name': 'Pam'}
答案 1 :(得分:148)
这对我来说是最蟒蛇的方式:
people = [
{'name': "Tom", 'age': 10},
{'name': "Mark", 'age': 5},
{'name': "Pam", 'age': 7}
]
filter(lambda person: person['name'] == 'Pam', people)
结果(在Python 2中作为列表返回):
[{'age': 7, 'name': 'Pam'}]
注意:在Python 3中,返回一个过滤器对象。所以python3解决方案将是:
list(filter(lambda person: person['name'] == 'Pam', people))
答案 2 :(得分:49)
.next()
的语法略有改变。因此略有修改:
>>> dicts = [
{ "name": "Tom", "age": 10 },
{ "name": "Mark", "age": 5 },
{ "name": "Pam", "age": 7 },
{ "name": "Dick", "age": 12 }
]
>>> next(item for item in dicts if item["name"] == "Pam")
{'age': 7, 'name': 'Pam'}
如@Matt的评论所述,您可以添加默认值:
>>> next((item for item in dicts if item["name"] == "Pam"), False)
{'name': 'Pam', 'age': 7}
>>> next((item for item in dicts if item["name"] == "Sam"), False)
False
>>>
答案 3 :(得分:33)
您可以使用list comprehension:
def search(name, people):
return [element for element in people if element['name'] == name]
答案 4 :(得分:23)
people = [
{'name': "Tom", 'age': 10},
{'name': "Mark", 'age': 5},
{'name': "Pam", 'age': 7}
]
def search(name):
for p in people:
if p['name'] == name:
return p
search("Pam")
答案 5 :(得分:9)
向@FrédéricHamidi添加一点点。
如果您不确定某个键位于dicts列表中,这样的内容会有所帮助:
next((item for item in dicts if item.get("name") and item["name"] == "Pam"), None)
答案 6 :(得分:8)
你有没有试过熊猫包?它非常适合这种搜索任务并进行优化。
import pandas as pd
listOfDicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
# Create a data frame, keys are used as column headers.
# Dict items with the same key are entered into the same respective column.
df = pd.DataFrame(listOfDicts)
# The pandas dataframe allows you to pick out specific values like so:
df2 = df[ (df['name'] == 'Pam') & (df['age'] == 7) ]
# Alternate syntax, same thing
df2 = df[ (df.name == 'Pam') & (df.age == 7) ]
我在下面添加了一些基准测试来说明大熊猫'更大规模的运行时间更快,即100k +条目:
setup_large = 'dicts = [];\
[dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 })) for _ in range(25000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'
setup_small = 'dicts = [];\
dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 }));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'
method1 = '[item for item in dicts if item["name"] == "Pam"]'
method2 = 'df[df["name"] == "Pam"]'
import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))
t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method Pandas: ' + str(t.timeit(100)))
#Small Method LC: 0.000191926956177
#Small Method Pandas: 0.044392824173
#Large Method LC: 1.98827004433
#Large Method Pandas: 0.324505090714
答案 7 :(得分:6)
names = [{'name':'Tom', 'age': 10}, {'name': 'Mark', 'age': 5}, {'name': 'Pam', 'age': 7}]
resultlist = [d for d in names if d.get('name', '') == 'Pam']
first_result = resultlist[0]
这是一种方式......
答案 8 :(得分:6)
这是在字典列表中搜索值的一般方法:
def search_dictionaries(key, value, list_of_dictionaries):
return [element for element in list_of_dictionaries if element[key] == value]
答案 9 :(得分:4)
我的第一个想法是你可能想要考虑创建这些词典的字典......例如,如果你要搜索它的次数不是很多次。
然而,这可能是一个不成熟的优化。会出现什么问题:
def get_records(key, store=dict()):
'''Return a list of all records containing name==key from our store
'''
assert key is not None
return [d for d in store if d['name']==key]
答案 10 :(得分:4)
如果l
是列表,则使用列表推导的一种简单方法是
l = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
然后
[d['age'] for d in l if d['name']=='Tom']
答案 11 :(得分:3)
dicts=[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
from collections import defaultdict
dicts_by_name=defaultdict(list)
for d in dicts:
dicts_by_name[d['name']]=d
print dicts_by_name['Tom']
#output
#>>>
#{'age': 10, 'name': 'Tom'}
答案 12 :(得分:2)
这里提出的大多数(如果不是全部)实现都有两个缺陷:
最新主张:
def find_first_in_list(objects, **kwargs):
return next((obj for obj in objects if
len(set(obj.keys()).intersection(kwargs.keys())) > 0 and
all([obj[k] == v for k, v in kwargs.items() if k in obj.keys()])),
None)
也许不是最Python的,但至少具有更多的故障保护功能。
用法:
>>> obj1 = find_first_in_list(list_of_dict, name='Pam', age=7)
>>> obj2 = find_first_in_list(list_of_dict, name='Pam', age=27)
>>> obj3 = find_first_in_list(list_of_dict, name='Pam', address='nowhere')
>>>
>>> print(obj1, obj2, obj3)
{"name": "Pam", "age": 7}, None, {"name": "Pam", "age": 7}
gist。
答案 13 :(得分:1)
def dsearch(lod, **kw):
return filter(lambda i: all((i[k] == v for (k, v) in kw.items())), lod)
lod=[{'a':33, 'b':'test2', 'c':'a.ing333'},
{'a':22, 'b':'ihaha', 'c':'fbgval'},
{'a':33, 'b':'TEst1', 'c':'s.ing123'},
{'a':22, 'b':'ihaha', 'c':'dfdvbfjkv'}]
list(dsearch(lod, a=22))
[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'},
{'a': 22, 'b': 'ihaha', 'c': 'dfdvbfjkv'}]
list(dsearch(lod, a=22, b='ihaha'))
[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'},
{'a': 22, 'b': 'ihaha', 'c': 'dfdvbfjkv'}]
list(dsearch(lod, a=22, c='fbgval'))
[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'}]
答案 14 :(得分:1)
仅使用列表理解:
[i for i in dct if i['name'] == 'Pam'][0]
示例代码:
dct = [
{'name': 'Tom', 'age': 10},
{'name': 'Mark', 'age': 5},
{'name': 'Pam', 'age': 7}
]
print([i for i in dct if i['name'] == 'Pam'][0])
> {'age': 7, 'name': 'Pam'}
答案 15 :(得分:0)
我会像这样创建一个字典:
names = ["Tom", "Mark", "Pam"]
ages = [10, 5, 7]
my_d = {}
for i, j in zip(names, ages):
my_d[i] = {"name": i, "age": j}
或者,使用与发布的问题完全相同的信息:
info_list = [{"name": "Tom", "age": 10}, {"name": "Mark", "age": 5}, {"name": "Pam", "age": 7}]
my_d = {}
for d in info_list:
my_d[d["name"]] = d
然后你可以做 my_d["Pam"]
并得到 {"name": "Pam", "age": 7}
答案 16 :(得分:0)
您可以通过在Python中使用filter和next方法来实现这一目标。
filter
方法过滤给定的序列并返回一个迭代器。
next
方法接受一个迭代器并返回列表中的下一个元素。
所以您可以通过以下方式找到元素
my_dict = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
next(filter(lambda obj: obj.get('name') == 'Pam', my_dict), None)
输出为
{'name': 'Pam', 'age': 7}
注意:如果找不到我们正在搜索的名称,上述代码将返回None
。
答案 17 :(得分:0)
我认为您可以使用Pandas进行处理。
import pandas as pd
person_list = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
person_df = pd.DataFrame(person_list)
person_df[person_df["name"] == "Pam"].to_dict('records')
它输出:
[{'age': 7, 'name': 'Pam'}]
优点是:
答案 18 :(得分:0)
您可以尝试以下方法:
''' lst: list of dictionaries '''
lst = [{"name": "Tom", "age": 10}, {"name": "Mark", "age": 5}, {"name": "Pam", "age": 7}]
search = raw_input("What name: ") #Input name that needs to be searched (say 'Pam')
print [ lst[i] for i in range(len(lst)) if(lst[i]["name"]==search) ][0] #Output
>>> {'age': 7, 'name': 'Pam'}
答案 19 :(得分:0)
当我在搜索相同的答案时,我找到了这个帖子 题。虽然我意识到这是一个迟到的答案,我想我会 如果它对其他人有用,请提供帮助:
def find_dict_in_list(dicts, default=None, **kwargs):
"""Find first matching :obj:`dict` in :obj:`list`.
:param list dicts: List of dictionaries.
:param dict default: Optional. Default dictionary to return.
Defaults to `None`.
:param **kwargs: `key=value` pairs to match in :obj:`dict`.
:returns: First matching :obj:`dict` from `dicts`.
:rtype: dict
"""
rval = default
for d in dicts:
is_found = False
# Search for keys in dict.
for k, v in kwargs.items():
if d.get(k, None) == v:
is_found = True
else:
is_found = False
break
if is_found:
rval = d
break
return rval
if __name__ == '__main__':
# Tests
dicts = []
keys = 'spam eggs shrubbery knight'.split()
start = 0
for _ in range(4):
dct = {k: v for k, v in zip(keys, range(start, start+4))}
dicts.append(dct)
start += 4
# Find each dict based on 'spam' key only.
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam) == dicts[x]
# Find each dict based on 'spam' and 'shrubbery' keys.
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam, shrubbery=spam+2) == dicts[x]
# Search for one correct key, one incorrect key:
for x in range(len(dicts)):
spam = x*4
assert find_dict_in_list(dicts, spam=spam, shrubbery=spam+1) is None
# Search for non-existent dict.
for x in range(len(dicts)):
spam = x+100
assert find_dict_in_list(dicts, spam=spam) is None
答案 20 :(得分:0)
这是一个比较使用迭代throuhg列表,使用filter + lambda或重构(如果需要或对你的情况有效)你的代码来决定dicts而不是dicts列表
import time
# Build list of dicts
list_of_dicts = list()
for i in range(100000):
list_of_dicts.append({'id': i, 'name': 'Tom'})
# Build dict of dicts
dict_of_dicts = dict()
for i in range(100000):
dict_of_dicts[i] = {'name': 'Tom'}
# Find the one with ID of 99
# 1. iterate through the list
lod_ts = time.time()
for elem in list_of_dicts:
if elem['id'] == 99999:
break
lod_tf = time.time()
lod_td = lod_tf - lod_ts
# 2. Use filter
f_ts = time.time()
x = filter(lambda k: k['id'] == 99999, list_of_dicts)
f_tf = time.time()
f_td = f_tf- f_ts
# 3. find it in dict of dicts
dod_ts = time.time()
x = dict_of_dicts[99999]
dod_tf = time.time()
dod_td = dod_tf - dod_ts
print 'List of Dictionries took: %s' % lod_td
print 'Using filter took: %s' % f_td
print 'Dict of Dicts took: %s' % dod_td
输出是这样的:
List of Dictionries took: 0.0099310874939
Using filter took: 0.0121960639954
Dict of Dicts took: 4.05311584473e-06
<强>结论:强> 显然,拥有词典字典是能够在这些情况下进行搜索的最有效方式,在这种情况下,您知道只会通过id搜索。 有趣的是使用过滤器是最慢的解决方案。
答案 21 :(得分:0)
您必须浏览列表中的所有元素。没有捷径!
除非在其他地方你保留了一个指向列表项目的名称字典,但是你必须要注意从列表中弹出一个元素的后果。