Python词典搜索列表

时间:2011-12-28 08:25:55

标签: python search dictionary

假设我有这个:

[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]

并通过搜索“Pam”作为名称,我想检索相关词典:{name: "Pam", age: 7}

如何实现这一目标?

22 个答案:

答案 0 :(得分:368)

您可以使用generator expression

>>> dicts = [
...     { "name": "Tom", "age": 10 },
...     { "name": "Mark", "age": 5 },
...     { "name": "Pam", "age": 7 },
...     { "name": "Dick", "age": 12 }
... ]

>>> next(item for item in dicts if item["name"] == "Pam")
{'age': 7, 'name': 'Pam'}

答案 1 :(得分:148)

这对我来说是最蟒蛇的方式:

people = [
{'name': "Tom", 'age': 10},
{'name': "Mark", 'age': 5},
{'name': "Pam", 'age': 7}
]

filter(lambda person: person['name'] == 'Pam', people)

结果(在Python 2中作为列表返回):

[{'age': 7, 'name': 'Pam'}]

注意:在Python 3中,返回一个过滤器对象。所以python3解决方案将是:

list(filter(lambda person: person['name'] == 'Pam', people))

答案 2 :(得分:49)

@FrédéricHamidi的答案很棒。在Python 3.x中,.next()的语法略有改变。因此略有修改:

>>> dicts = [
     { "name": "Tom", "age": 10 },
     { "name": "Mark", "age": 5 },
     { "name": "Pam", "age": 7 },
     { "name": "Dick", "age": 12 }
 ]
>>> next(item for item in dicts if item["name"] == "Pam")
{'age': 7, 'name': 'Pam'}

如@Matt的评论所述,您可以添加默认值:

>>> next((item for item in dicts if item["name"] == "Pam"), False)
{'name': 'Pam', 'age': 7}
>>> next((item for item in dicts if item["name"] == "Sam"), False)
False
>>>

答案 3 :(得分:33)

您可以使用list comprehension

def search(name, people):
    return [element for element in people if element['name'] == name]

答案 4 :(得分:23)

people = [
{'name': "Tom", 'age': 10},
{'name': "Mark", 'age': 5},
{'name': "Pam", 'age': 7}
]

def search(name):
    for p in people:
        if p['name'] == name:
            return p

search("Pam")

答案 5 :(得分:9)

向@FrédéricHamidi添加一点点。

如果您不确定某个键位于dicts列表中,这样的内容会有所帮助:

next((item for item in dicts if item.get("name") and item["name"] == "Pam"), None)

答案 6 :(得分:8)

你有没有试过熊猫包?它非常适合这种搜索任务并进行优化。

import pandas as pd

listOfDicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]

# Create a data frame, keys are used as column headers.
# Dict items with the same key are entered into the same respective column.
df = pd.DataFrame(listOfDicts)

# The pandas dataframe allows you to pick out specific values like so:

df2 = df[ (df['name'] == 'Pam') & (df['age'] == 7) ]

# Alternate syntax, same thing

df2 = df[ (df.name == 'Pam') & (df.age == 7) ]

我在下面添加了一些基准测试来说明大熊猫'更大规模的运行时间更快,即100k +条目:

setup_large = 'dicts = [];\
[dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 })) for _ in range(25000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'

setup_small = 'dicts = [];\
dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 }));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'

method1 = '[item for item in dicts if item["name"] == "Pam"]'
method2 = 'df[df["name"] == "Pam"]'

import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))

t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method Pandas: ' + str(t.timeit(100)))

#Small Method LC: 0.000191926956177
#Small Method Pandas: 0.044392824173
#Large Method LC: 1.98827004433
#Large Method Pandas: 0.324505090714

答案 7 :(得分:6)

names = [{'name':'Tom', 'age': 10}, {'name': 'Mark', 'age': 5}, {'name': 'Pam', 'age': 7}]
resultlist = [d    for d in names     if d.get('name', '') == 'Pam']
first_result = resultlist[0]

这是一种方式......

答案 8 :(得分:6)

这是在字典列表中搜索值的一般方法:

def search_dictionaries(key, value, list_of_dictionaries):
    return [element for element in list_of_dictionaries if element[key] == value]

答案 9 :(得分:4)

我的第一个想法是你可能想要考虑创建这些词典的字典......例如,如果你要搜索它的次数不是很多次。

然而,这可能是一个不成熟的优化。会出现什么问题:

def get_records(key, store=dict()):
    '''Return a list of all records containing name==key from our store
    '''
    assert key is not None
    return [d for d in store if d['name']==key]

答案 10 :(得分:4)

如果l是列表,则使用列表推导的一种简单方法是

l = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]

然后

[d['age'] for d in l if d['name']=='Tom']

答案 11 :(得分:3)

dicts=[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]

from collections import defaultdict
dicts_by_name=defaultdict(list)
for d in dicts:
    dicts_by_name[d['name']]=d

print dicts_by_name['Tom']

#output
#>>>
#{'age': 10, 'name': 'Tom'}

答案 12 :(得分:2)

这里提出的大多数(如果不是全部)实现都有两个缺陷:

  • 他们假设只传递一个键来进行搜索,而对于复杂的字典有更多键可能会很有趣
  • 他们假设传递给搜索的所有键都存在于字典中,因此当键错误不存在时,它们将无法正确处理。

最新主张:

def find_first_in_list(objects, **kwargs):
    return next((obj for obj in objects if
                 len(set(obj.keys()).intersection(kwargs.keys())) > 0 and
                 all([obj[k] == v for k, v in kwargs.items() if k in obj.keys()])),
                None)

也许不是最Python的,但至少具有更多的故障保护功能。

用法:

>>> obj1 = find_first_in_list(list_of_dict, name='Pam', age=7)
>>> obj2 = find_first_in_list(list_of_dict, name='Pam', age=27)
>>> obj3 = find_first_in_list(list_of_dict, name='Pam', address='nowhere')
>>> 
>>> print(obj1, obj2, obj3)
{"name": "Pam", "age": 7}, None, {"name": "Pam", "age": 7}

gist

答案 13 :(得分:1)

def dsearch(lod, **kw):
    return filter(lambda i: all((i[k] == v for (k, v) in kw.items())), lod)

lod=[{'a':33, 'b':'test2', 'c':'a.ing333'},
     {'a':22, 'b':'ihaha', 'c':'fbgval'},
     {'a':33, 'b':'TEst1', 'c':'s.ing123'},
     {'a':22, 'b':'ihaha', 'c':'dfdvbfjkv'}]



list(dsearch(lod, a=22))

[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'},
 {'a': 22, 'b': 'ihaha', 'c': 'dfdvbfjkv'}]



list(dsearch(lod, a=22, b='ihaha'))

[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'},
 {'a': 22, 'b': 'ihaha', 'c': 'dfdvbfjkv'}]


list(dsearch(lod, a=22, c='fbgval'))

[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'}]

答案 14 :(得分:1)

仅使用列表理解:

[i for i in dct if i['name'] == 'Pam'][0]

示例代码:

dct = [
    {'name': 'Tom', 'age': 10},
    {'name': 'Mark', 'age': 5},
    {'name': 'Pam', 'age': 7}
]

print([i for i in dct if i['name'] == 'Pam'][0])

> {'age': 7, 'name': 'Pam'}

答案 15 :(得分:0)

我会像这样创建一个字典:

names = ["Tom", "Mark", "Pam"]
ages = [10, 5, 7]
my_d = {}

for i, j in zip(names, ages):
    my_d[i] = {"name": i, "age": j}

或者,使用与发布的问题完全相同的信息:

info_list = [{"name": "Tom", "age": 10}, {"name": "Mark", "age": 5}, {"name": "Pam", "age": 7}]
my_d = {}

for d in info_list:
    my_d[d["name"]] = d

然后你可以做 my_d["Pam"] 并得到 {"name": "Pam", "age": 7}

答案 16 :(得分:0)

您可以通过在Python中使用filter和next方法来实现这一目标。

filter方法过滤给定的序列并返回一个迭代器。 next方法接受一个迭代器并返回列表中的下一个元素。

所以您可以通过以下方式找到元素

my_dict = [
    {"name": "Tom", "age": 10},
    {"name": "Mark", "age": 5},
    {"name": "Pam", "age": 7}
]

next(filter(lambda obj: obj.get('name') == 'Pam', my_dict), None)

输出为

{'name': 'Pam', 'age': 7}

注意:如果找不到我们正在搜索的名称,上述代码将返回None

答案 17 :(得分:0)

我认为您可以使用Pandas进行处理。

import pandas as pd

person_list = [
    {"name": "Tom", "age": 10},
    {"name": "Mark", "age": 5},
    {"name": "Pam", "age": 7}
]

person_df = pd.DataFrame(person_list)
person_df[person_df["name"] == "Pam"].to_dict('records')

它输出:

[{'age': 7, 'name': 'Pam'}]

优点是:

  • 熊猫提供高性能的数据处理,这意味着,如果您有大量数据集,则搜索不会花费很多时间。
  • 数据结构易于使用,您可以将数据当作表格进行进一步分析。

答案 18 :(得分:0)

您可以尝试以下方法:

''' lst: list of dictionaries '''
lst = [{"name": "Tom", "age": 10}, {"name": "Mark", "age": 5}, {"name": "Pam", "age": 7}]

search = raw_input("What name: ") #Input name that needs to be searched (say 'Pam')

print [ lst[i] for i in range(len(lst)) if(lst[i]["name"]==search) ][0] #Output
>>> {'age': 7, 'name': 'Pam'} 

答案 19 :(得分:0)

当我在搜索相同的答案时,我找到了这个帖子 题。虽然我意识到这是一个迟到的答案,我想我会 如果它对其他人有用,请提供帮助:

def find_dict_in_list(dicts, default=None, **kwargs):
    """Find first matching :obj:`dict` in :obj:`list`.

    :param list dicts: List of dictionaries.
    :param dict default: Optional. Default dictionary to return.
        Defaults to `None`.
    :param **kwargs: `key=value` pairs to match in :obj:`dict`.

    :returns: First matching :obj:`dict` from `dicts`.
    :rtype: dict

    """

    rval = default
    for d in dicts:
        is_found = False

        # Search for keys in dict.
        for k, v in kwargs.items():
            if d.get(k, None) == v:
                is_found = True

            else:
                is_found = False
                break

        if is_found:
            rval = d
            break

    return rval


if __name__ == '__main__':
    # Tests
    dicts = []
    keys = 'spam eggs shrubbery knight'.split()

    start = 0
    for _ in range(4):
        dct = {k: v for k, v in zip(keys, range(start, start+4))}
        dicts.append(dct)
        start += 4

    # Find each dict based on 'spam' key only.  
    for x in range(len(dicts)):
        spam = x*4
        assert find_dict_in_list(dicts, spam=spam) == dicts[x]

    # Find each dict based on 'spam' and 'shrubbery' keys.
    for x in range(len(dicts)):
        spam = x*4
        assert find_dict_in_list(dicts, spam=spam, shrubbery=spam+2) == dicts[x]

    # Search for one correct key, one incorrect key:
    for x in range(len(dicts)):
        spam = x*4
        assert find_dict_in_list(dicts, spam=spam, shrubbery=spam+1) is None

    # Search for non-existent dict.
    for x in range(len(dicts)):
        spam = x+100
        assert find_dict_in_list(dicts, spam=spam) is None

答案 20 :(得分:0)

这是一个比较使用迭代throuhg列表,使用filter + lambda或重构(如果需要或对你的情况有效)你的代码来决定dicts而不是dicts列表

import time

# Build list of dicts
list_of_dicts = list()
for i in range(100000):
    list_of_dicts.append({'id': i, 'name': 'Tom'})

# Build dict of dicts
dict_of_dicts = dict()
for i in range(100000):
    dict_of_dicts[i] = {'name': 'Tom'}


# Find the one with ID of 99

# 1. iterate through the list
lod_ts = time.time()
for elem in list_of_dicts:
    if elem['id'] == 99999:
        break
lod_tf = time.time()
lod_td = lod_tf - lod_ts

# 2. Use filter
f_ts = time.time()
x = filter(lambda k: k['id'] == 99999, list_of_dicts)
f_tf = time.time()
f_td = f_tf- f_ts

# 3. find it in dict of dicts
dod_ts = time.time()
x = dict_of_dicts[99999]
dod_tf = time.time()
dod_td = dod_tf - dod_ts


print 'List of Dictionries took: %s' % lod_td
print 'Using filter took: %s' % f_td
print 'Dict of Dicts took: %s' % dod_td

输出是这样的:

List of Dictionries took: 0.0099310874939
Using filter took: 0.0121960639954
Dict of Dicts took: 4.05311584473e-06

<强>结论: 显然,拥有词典字典是能够在这些情况下进行搜索的最有效方式,在这种情况下,您知道只会通过id搜索。 有趣的是使用过滤器是最慢的解决方案。

答案 21 :(得分:0)

您必须浏览列表中的所有元素。没有捷径!

除非在其他地方你保留了一个指向列表项目的名称字典,但是你必须要注意从列表中弹出一个元素的后果。