我有关于二叉搜索树的代码,我想要计算插入,删除和查找BST中的最大值和最小值的效率
我按照那样插入
public static void main(String args[]) {
BinarySearchTree bst = new BinarySearchTree();
Random random = new Random(System.currentTimeMillis());
int[] randoms = new int[1000];
Random randGen = new Random();
long start = System.currentTimeMillis();
for (int i = 0; i < randoms.length; i++) {
bst.insert(random.nextInt(10));
}
System.out.println("\n sorted :");
random.nextInt(10);
bst.inorderTraversal();
long end = System.currentTimeMillis();
System.out.println("\n Running Time for insert ");
System.out.println(end - start);
}
我有这个删除代码,并希望修改它适合我的插入代码,但我无法退出
public static void main(String[] args){
pBSTRemoveNode tree = null;
int[] numbers = {56,86,71,97,82,99,65,36,16,10,28,52,46};
System.out.print("inserting: ");
for(int i = 0;i<numbers.length;i++){
Integer n = new Integer(numbers[i]);
System.out.print(" "+n);
tree = tree_AddNumber(tree,n);
}
System.out.print("\ntree: ");
tree_InOrderPrint(tree);
for(int j = 0;j < numbers.length;j++){
Integer n = new Integer(numbers[j]);
System.out.print("\nremove: "+n+" tree: ");
tree = tree_removeNumber(tree,n);
tree_InOrderPrint(tree);
}
System.out.println("\ndone ;-)");
}
}
我想删除的方法,我想在主
中调用它public void delete( Node node, int data ) {
if( node == null ) {
return;
}
else if ( data == node.data) {
if( node.left == null ) {
swap( node, node.right );
}
else if( node.right == null ) {
swap( node, node.left );
}
else {
Node minNode = node.right;
while( minNode.left != null ) {
minNode = minNode.left;
}
if( minNode.parent != node ) {
swap( minNode, minNode.right );
minNode.right = node.right;
minNode.right.parent = minNode;
}
swap( node, minNode );
minNode.left = node.left;
minNode.left.parent = minNode;
}
}
// Continue searching in the left subtree.
else if( data < node.data) {
delete( node.left, data );
}
// Continue searching in the right subtree.
else {
delete( node.right, data );
}
}
答案 0 :(得分:1)
我认为基本上在交换方法中,您正在交换数据。如果是这样,那么下面的代码就可以了。
void swap(Node a, Node b) {
if(a != null && b != null) {
int data = a.data;
a.data = b.data;
b.data = data;
}
}
插入的复杂性是,O(h)其中h是树的高度。 在最佳情况下(树是平衡的),它是O(log N),其中N是节点的数量。 在最坏的情况下(树不平衡,BST就是这种情况),它是O(N),其中N是节点数。
此逻辑适用于max和min。
首先找到包含给定数据的节点。例如, 节点n =查找(数据); 然后调用delete(n);
public void delete( Node node) {
if( node == null ) {
return;
}
if( node.left == null ) {
swap( node, node.right );
node.right=null;
}
else if( node.right == null ) {
swap( node, node.left );
node.left=null;
}
else {
Node minNode = node.right;
while( minNode.left != null ) {
minNode = minNode.left;
}
swap( node, minNode );
delete(minNode); // call recursively until you find a node whose left or right is null
}
}