我正在尝试实现特定图形(对称置换组的Cayley图)的可视化,就像在这里完成的那样,但使用带有Dot的Graphviz 2.28。
cayley http://www.euclideanspace.com/maths/discrete/groups/categorise/finite/cube/cayleyGraph.png
digraph cayley {
i -> x [color=red];
i -> y [color=blue];
x -> xx [color=red];
x -> xy [color=blue];
y -> yx [color=red];
y -> yy [color=blue];
xx -> xxx [color=red];
xx -> xxy [color=blue];
xy -> xyx [color=red];
xy -> xyy [color=blue];
yx -> yxx [color=red];
yx -> xyx [color=blue];
yy -> yyx [color=red];
yy -> yyy [color=blue];
xxx -> i [color=red];
xxx -> xxxy [color=blue];
xxy -> xxyx [color=red];
xxy -> xxyy [color=blue];
xyx -> xyxx [color=red];
xyx -> xxyx [color=blue];
xyy -> yy [color=red];
xyy -> xyyy [color=blue];
yxx -> yxxx [color=red];
yxx -> xx [color=blue];
yyx -> xxyy [color=red];
yyx -> xyxx [color=blue];
yyy -> yyyx [color=red];
yyy -> i [color=blue];
xxxy -> xxxyx [color=red];
xxxy -> yyx [color=blue];
xxyx -> yyy [color=red];
xxyx -> xxxyx [color=blue];
xxyy -> xyy [color=red];
xxyy -> yxx [color=blue];
xyxx -> xyxxx [color=red];
xyxx -> xxx [color=blue];
xyyy -> xyyyx [color=red];
xyyy -> x [color=blue];
yxxx -> y [color=red];
yxxx -> xyyyx [color=blue];
yyyx -> xxy [color=red];
yyyx -> xyxxx [color=blue];
xxxyx -> xyyy [color=red];
xxxyx -> yx [color=blue];
xyxxx -> xy [color=red];
xyxxx -> yxxx [color=blue];
xyyyx -> xxxy [color=red];
xyyyx -> yyyx [color=blue];
}
My Dot生成以下布局:这是一个与前一个相比非常大的图形。是否有任何attribute能够使图表尽可能紧密地压缩到第一个图形?
答案 0 :(得分:24)
我修改了图形,节点和边缘默认属性等代码,使布局尽可能紧凑。也许有更完美的方法。顺便说一下,节点i
位于左侧但不是右侧。
digraph cayley {
graph[rankdir=LR, center=true, margin=0.2, nodesep=0.1, ranksep=0.3]
node[shape=circle, fontname="Courier-Bold", fontsize=10, width=0.4, height=0.4, fixedsize=true]
edge[arrowsize=0.6, arrowhead=vee]
i -> x [color=red];
i -> y [color=blue];
x -> xx [color=red];
x -> xy [color=blue];
y -> yx [color=red];
y -> yy [color=blue];
xx -> xxx [color=red];
xx -> xxy [color=blue];
xy -> xyx [color=red];
xy -> xyy [color=blue];
yx -> yxx [color=red];
yx -> xyx [color=blue];
yy -> yyx [color=red];
yy -> yyy [color=blue];
xxx -> i [color=red];
xxx -> xxxy [color=blue];
xxy -> xxyx [color=red];
xxy -> xxyy [color=blue];
xyx -> xyxx [color=red];
xyx -> xxyx [color=blue];
xyy -> yy [color=red];
xyy -> xyyy [color=blue];
yxx -> yxxx [color=red];
yxx -> xx [color=blue];
yyx -> xxyy [color=red];
yyx -> xyxx [color=blue];
yyy -> yyyx [color=red];
yyy -> i [color=blue];
xxxy -> xxxyx [color=red];
xxxy -> yyx [color=blue];
xxyx -> yyy [color=red];
xxyx -> xxxyx [color=blue];
xxyy -> xyy [color=red];
xxyy -> yxx [color=blue];
xyxx -> xyxxx [color=red];
xyxx -> xxx [color=blue];
xyyy -> xyyyx [color=red];
xyyy -> x [color=blue];
yxxx -> y [color=red];
yxxx -> xyyyx [color=blue];
yyyx -> xxy [color=red];
yyyx -> xyxxx [color=blue];
xxxyx -> xyyy [color=red];
xxxyx -> yx [color=blue];
xyxxx -> xy [color=red];
xyxxx -> yxxx [color=blue];
xyyyx -> xxxy [color=red];
xyyyx -> yyyx [color=blue];
{ rank=same; x; y }
{ rank=same; xx; xy; yx; yy }
{ rank=same; xxx; xxy; xyx; xyy; yxx; yyx; yyy }
{ rank=same; xxxy; xxyx; xxyy; xyxx; xyyy; yxxx; yyyx }
{ rank=same; xxxyx; xyxxx; xyyyx }
}
图像显示如下。