Monad变压器用于进度跟踪

时间:2011-12-19 03:13:05

标签: haskell functional-programming monads coroutine monad-transformers

我正在寻找可用于跟踪程序进度的monad变换器。要解释如何使用它,请考虑以下代码:

procedure :: ProgressT IO ()
procedure = task "Print some lines" 3 $ do
  liftIO $ putStrLn "line1"
  step
  task "Print a complicated line" 2 $ do
    liftIO $ putStr "li"
    step
    liftIO $ putStrLn "ne2"
  step
  liftIO $ putStrLn "line3"

-- Wraps an action in a task
task :: Monad m
     => String        -- Name of task
     -> Int           -- Number of steps to complete task
     -> ProgressT m a -- Action performing the task
     -> ProgressT m a

-- Marks one step of the current task as completed
step :: Monad m => ProgressT m ()

我意识到由于monadic定律,step必须明确存在,并且由于程序确定性/暂停问题,task必须有明确的步数参数。

如上所述,如上所述的monad可以通过以下两种方式之一实现:

  1. 通过一个能够返回当前任务名称/步骤索引堆栈的函数,以及在它停止时的过程中的继续。在返回的continuation上重复调用此函数将完成该过程的执行。
  2. 通过一个功能,该功能描述了任务步骤完成后要执行的操作。该程序将无法控制地运行,直至完成,通过提供的操作“通知”环境变化。
  3. 对于解决方案(1),我使用Control.Monad.Coroutine暂停仿函数查看了Yield。对于解决方案(2),我不知道任何已有的monad变换器是否有用。

    我正在寻找的解决方案不应该有太多的性能开销,并且尽可能多地控制过程(例如,不需要IO访问或其他东西)。

    这些解决方案中的一个听起来是否可行,或者已经在某个地方解决了这个问题?这个问题是否已经用我无法找到的monad变压器解决了?

    编辑:目标不是检查是否已执行所有步骤。目标是能够在流程运行时“监控”流程,以便人们知道流程已经完成了多少。

3 个答案:

答案 0 :(得分:4)

这是我对这个问题的悲观解决方案。它使用Coroutine来暂停每一步的计算,这使用户可以执行任意计算来报告某些进度。

编辑:可以找到此解决方案的完整实施here

可以改进此解决方案吗?

首先,如何使用它:

-- The procedure that we want to run.
procedure :: ProgressT IO ()
procedure = task "Print some lines" 3 $ do
  liftIO $ putStrLn "--> line 1"
  step
  task "Print a set of lines" 2 $ do
    liftIO $ putStrLn "--> line 2.1"
    step
    liftIO $ putStrLn "--> line 2.2"
  step
  liftIO $ putStrLn "--> line 3"

main :: IO ()
main = runConsole procedure

-- A "progress reporter" that simply prints the task stack on each step
-- Note that the monad used for reporting, and the monad used in the procedure,
-- can be different.
runConsole :: ProgressT IO a -> IO a
runConsole proc = do
  result <- runProgress proc
  case result of
    -- We stopped at a step:
    Left (cont, stack) -> do
      print stack     -- Print the stack
      runConsole cont -- Continue the procedure
    -- We are done with the computation:
    Right a -> return a

上述程序输出:

--> line 1
[Print some lines (1/3)]
--> line 2.1
[Print a set of lines (1/2),Print some lines (1/3)]
--> line 2.2
[Print a set of lines (2/2),Print some lines (1/3)]
[Print some lines (2/3)]
--> line 3
[Print some lines (3/3)]

实际实施(请参阅this注释版本):

type Progress l = ProgressT l Identity

runProgress :: Progress l a
               -> Either (Progress l a, TaskStack l) a
runProgress = runIdentity . runProgressT

newtype ProgressT l m a =
  ProgressT
  {
    procedure ::
       Coroutine
       (Yield (TaskStack l))
       (StateT (TaskStack l) m) a
  }

instance MonadTrans (ProgressT l) where
  lift = ProgressT . lift . lift

instance Monad m => Monad (ProgressT l m) where
  return = ProgressT . return
  p >>= f = ProgressT (procedure p >>= procedure . f)

instance MonadIO m => MonadIO (ProgressT l m) where
  liftIO = lift . liftIO

runProgressT :: Monad m
                => ProgressT l m a
                -> m (Either (ProgressT l m a, TaskStack l) a)
runProgressT action = do
  result <- evalStateT (resume . procedure $ action) []
  return $ case result of
    Left (Yield stack cont) -> Left (ProgressT cont, stack)
    Right a -> Right a

type TaskStack l = [Task l]

data Task l =
  Task
  { taskLabel :: l
  , taskTotalSteps :: Word
  , taskStep :: Word
  } deriving (Show, Eq)

task :: Monad m
        => l
        -> Word
        -> ProgressT l m a
        -> ProgressT l m a
task label steps action = ProgressT $ do
  -- Add the task to the task stack
  lift . modify $ pushTask newTask

  -- Perform the procedure for the task
  result <- procedure action

  -- Insert an implicit step at the end of the task
  procedure step

  -- The task is completed, and is removed
  lift . modify $ popTask

  return result
  where
    newTask = Task label steps 0
    pushTask = (:)
    popTask = tail

step :: Monad m => ProgressT l m ()
step = ProgressT $ do
  (current : tasks) <- lift get
  let currentStep = taskStep current
      nextStep = currentStep + 1
      updatedTask = current { taskStep = nextStep }
      updatedTasks = updatedTask : tasks
  when (currentStep > taskTotalSteps current) $
    fail "The task has already completed"
  yield updatedTasks
  lift . put $ updatedTasks

答案 1 :(得分:2)

最明显的方法是使用StateT

import Control.Monad.State

type ProgressT m a = StateT Int m a

step :: Monad m => ProgressT m ()
step = modify (subtract 1)

我不确定你想要task的语义是什么,但是......

编辑以显示您如何使用IO

执行此操作
step :: (Monad m, MonadIO m) => ProgressT m ()
step = do
  modify (subtract 1)
  s <- get
  liftIO $ putStrLn $ "steps remaining: " ++ show s

请注意,您需要MonadIO约束来打印状态。如果您需要对状态产生不同的影响,则可以使用不同类型的约束(例如,如果步数低于零,则抛出异常,或者其他)。

答案 2 :(得分:1)

不确定这是否正是您想要的,但这是一个强制执行正确步骤数的实现,并要求在最后留下零步骤。为简单起见,我使用monad而不是IO上的monad转换器。请注意,我没有使用Prelude monad来做我正在做的事情。

<强>更新

现在可以提取剩余步骤的数量。使用-XRebindableSyntax

运行以下命令
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}

module Test where

import Prelude hiding (Monad(..))
import qualified Prelude as Old (Monad(..))

-----------------------------------------------------------

data Z = Z
data S n = S

type Zero = Z
type One = S Zero
type Two = S One
type Three = S Two
type Four = S Three

-----------------------------------------------------------

class Peano n where
  peano :: n
  fromPeano :: n -> Integer

instance Peano Z where
  peano = Z
  fromPeano Z = 0

instance Peano (S Z) where
  peano = S
  fromPeano S = 1

instance Peano (S n) => Peano (S (S n)) where
  peano = S
  fromPeano s = n `seq` (n + 1)
    where
      prev :: S (S n) -> (S n)
      prev S = S
      n = fromPeano $ prev s

-----------------------------------------------------------

class (Peano s, Peano p) => Succ s p | s -> p where
instance Succ (S Z) Z where
instance Succ (S n) n => Succ (S (S n)) (S n) where

-----------------------------------------------------------

infixl 1 >>=, >>

class ParameterisedMonad m where
  return :: a -> m s s a
  (>>=) :: m s1 s2 t -> (t -> m s2 s3 a) -> m s1 s3 a
  fail :: String -> m s1 s2 a
  fail = error

(>>) :: ParameterisedMonad m => m s1 s2 t -> m s2 s3 a -> m s1 s3 a
x >> f = x >>= \_ -> f

-----------------------------------------------------------

newtype PIO p q a = PIO { runPIO :: IO a }

instance ParameterisedMonad PIO where
  return = PIO . Old.return
  PIO io >>= f = PIO $ (Old.>>=) io $ runPIO . f

-----------------------------------------------------------

data Progress p n a = Progress a

instance ParameterisedMonad Progress where
  return = Progress
  Progress x >>= f = let Progress y = f x in Progress y

runProgress :: Peano n => n -> Progress n Zero a -> a
runProgress _ (Progress x) = x

runProgress' :: Progress p Zero a -> a
runProgress' (Progress x) = x

task :: Peano n => n -> Progress n n ()
task _ = return ()

task' :: Peano n => Progress n n ()
task' = task peano

step :: Succ s n => Progress s n ()
step = Progress ()

stepsLeft :: Peano s2 => Progress s1 s2 a -> (a -> Integer -> Progress s2 s3 b) -> Progress s1 s3 b
stepsLeft prog f = prog >>= flip f (fromPeano $ getPeano prog)
  where
    getPeano :: Peano n => Progress s n a -> n
    getPeano prog = peano

procedure1 :: Progress Three Zero String
procedure1 = do
  task'
  step
  task (peano :: Two) -- any other Peano is a type error
  --step -- uncommenting this is a type error
  step -- commenting this is a type error
  step
  return "hello"

procedure2 :: (Succ two one, Succ one zero) => Progress two zero Integer
procedure2 = do
  task'
  step `stepsLeft` \_ n -> do
    step
    return n

main :: IO ()
main = runPIO $ do
  PIO $ putStrLn $ runProgress' procedure1
  PIO $ print $ runProgress (peano :: Four) $ do
    n <- procedure2
    n' <- procedure2
    return (n, n')