是否有一个模块让我的搜索无法发现允许编写如下代码?想要编写这样的代码的原因并不重要。我所追求的是一些代码,它有一个简单的API来生成公钥和私钥字节密钥,并使用这些密钥轻松编码和解码数据。
import module, os
method, bits, data = 'RSA', 1024, os.urandom(1024)
public, private = module.generate_keys(method, bits)
assert isinstance(public, bytes) and isinstance(private, bytes)
assert module.decode(module.encode(data, private), public) == data
assert module.decode(module.encode(data, public), private) == data
大多数似乎可用的内容都需要下载程序包,并且只能在Python 2.x上运行。查找使用PEM文件或其他类型证书的库也很常见。我想避免处理这些文件,动态生成公钥和私钥,并快速处理内存中的数据。
答案 0 :(得分:31)
公钥加密不在标准库中。虽然在PyPi上有一些第三方库:
如果你对它背后的数学感兴趣,Python可以很容易地进行实验:
code = pow(msg, 65537, 5551201688147) # encode using a public key
plaintext = pow(code, 109182490673, 5551201688147) # decode using a private key
密钥生成涉及更多一点。下面是如何使用 urandom 作为熵源在内存中进行密钥生成的简化示例。代码在Py2.6和Py3.x下运行:
import random
def gen_prime(N=10**8, bases=range(2,20000)):
# XXX replace with a more sophisticated algorithm
p = 1
while any(pow(base, p-1, p) != 1 for base in bases):
p = random.SystemRandom().randrange(N)
return p
def multinv(modulus, value):
'''Multiplicative inverse in a given modulus
>>> multinv(191, 138)
18
>>> 18 * 138 % 191
1
'''
# http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
x, lastx = 0, 1
a, b = modulus, value
while b:
a, q, b = b, a // b, a % b
x, lastx = lastx - q * x, x
result = (1 - lastx * modulus) // value
return result + modulus if result < 0 else result
def keygen(N):
'''Generate public and private keys from primes up to N.
>>> pubkey, privkey = keygen(2**64)
>>> msg = 123456789012345
>>> coded = pow(msg, 65537, pubkey)
>>> plain = pow(coded, privkey, pubkey)
>>> assert msg == plain
'''
# http://en.wikipedia.org/wiki/RSA
prime1 = gen_prime(N)
prime2 = gen_prime(N)
totient = (prime1 - 1) * (prime2 - 1)
return prime1 * prime2, multinv(totient, 65537)
答案 1 :(得分:2)
PyCrypto适用于Python 3及2.4.1。
答案 2 :(得分:2)
这是另一个例子
import random
# RSA Algorithm
ops = raw_input('Would you like a list of prime numbers to choose from (y/n)? ')
op = ops.upper()
if op == 'Y':
print """\n 2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 \n"""
rsa()
else:
print "\n"
rsa()
def rsa():
# Choose two prime numbers p and q
p = raw_input('Choose a p: ')
p = int(p)
while isPrime(p) == False:
print "Please ensure p is prime"
p = raw_input('Choose a p: ')
p = int(p)
q = raw_input('Choose a q: ')
q = int(q)
while isPrime(q) == False or p==q:
print "Please ensure q is prime and NOT the same value as p"
q = raw_input('Choose a q: ')
q = int(q)
# Compute n = pq
n = p * q
# Compute the phi of n
phi = (p-1) * (q-1)
# Choose an integer e such that e and phi(n) are coprime
e = random.randrange(1,phi)
# Use Euclid's Algorithm to verify that e and phi(n) are comprime
g = euclid(e,phi)
while(g!=1):
e = random.randrange(1,phi)
g = euclid(e,phi)
# Use Extended Euclid's Algorithm
d = extended_euclid(e,phi)
# Public and Private Key have been generated
public_key=(e,n)
private_key=(d,n)
print "Public Key [E,N]: ", public_key
print "Private Key [D,N]: ", private_key
# Enter plain text to be encrypted using the Public Key
sentence = raw_input('Enter plain text: ')
letters = list(sentence)
cipher = []
num = ""
# Encrypt the plain text
for i in range(0,len(letters)):
print "Value of ", letters[i], " is ", character[letters[i]]
c = (character[letters[i]]**e)%n
cipher += [c]
num += str(c)
print "Cipher Text is: ", num
plain = []
sentence = ""
# Decrypt the cipher text
for j in range(0,len(cipher)):
p = (cipher[j]**d)%n
for key in character.keys():
if character[key]==p:
plain += [key]
sentence += key
break
print "Plain Text is: ", sentence
# Euclid's Algorithm
def euclid(a, b):
if b==0:
return a
else:
return euclid(b, a % b)
# Euclid's Extended Algorithm
def extended_euclid(e,phi):
d=0
x1=0
x2=1
y1=1
orig_phi = phi
tempPhi = phi
while (e>0):
temp1 = int(tempPhi/e)
temp2 = tempPhi - temp1 * e
tempPhi = e
e = temp2
x = x2- temp1* x1
y = d - temp1 * y1
x2 = x1
x1 = x
d = y1
y1 = y
if tempPhi == 1:
d += phi
break
return d
# Checks if n is a prime number
def isPrime(n):
for i in range(2,n):
if n%i == 0:
return False
return True
character = {"A":1,"B":2,"C":3,"D":4,"E":5,"F":6,"G":7,"H":8,"I":9,"J":10,
"K":11,"L":12,"M":13,"N":14,"O":15,"P":16,"Q":17,"R":18,"S":19,
"T":20,"U":21,"V":22,"W":23,"X":24,"Y":25,"Z":26,"a":27,"b":28,
"c":29,"d":30,"e":31,"f":32,"g":33,"h":34,"i":35,"j":36,"k":37,
"l":38,"m":39,"n":40,"o":41,"p":42,"q":43,"r":44,"s":45,"t":46,
"u":47,"v":48,"w":49,"x":50,"y":51,"z":52, " ":53, ".":54, ",":55,
"?":56,"/":57,"!":58,"(":59,")":60,"$":61,":":62,";":63,"'":64,"@":65,
"#":66,"%":67,"^":68,"&":69,"*":70,"+":71,"-":72,"_":73,"=":74}
答案 3 :(得分:1)
这里在很多地方都提到了 PyCrypto。有了这个答案,而不是评论,我想指出 PyCrypto 的最后一个版本是从 2013 年开始的。对于密码学库来说,这是不可接受的,因为潜在的危险问题没有得到解决。
但是,PyCrypto 有一个分支,PyCryptodome,它将继续开发。 Link to Github: https://github.com/Legrandin/pycryptodome