我需要手动计算Ticklabels和图表的Tickrange。
我知道好标记的“标准”算法(参见http://books.google.de/books?id=fvA7zLEFWZgC&pg=PA61&lpg=PA61&redir_esc=y#v=onepage&q&f=false),我也知道this Java implementation。
问题是,使用这种算法,滴答声“太聪明”了。这意味着,该算法决定应显示多少刻度。我的要求是,总有5个Ticks,但这些当然应该是“漂亮的”。天真的方法是获得最大值,除以5并乘以ticknumber。这里的值 - 当然 - 不是最优的,而且滴答非常难看。
有没有人知道问题的解决方案或提示正式的算法描述?
答案 0 :(得分:57)
我是“Algorithm for Optimal Scaling on a Chart Axis”的作者。它曾经托管在trollop.org上,但我最近移动了域/博客引擎。无论如何,我会在这里发布内容以便于访问。
我一直在为一项任务安排Android图表应用程序,并且在以精确缩放的格式呈现图表时遇到了一些问题。我花了一些时间尝试自己创建这个算法并且非常接近,但最后我在Andrew S.Glassner的一本名为“Graphics Gems,Volume 1”的书中找到了一个伪代码示例。关于“Nice Numbers for Graph Labels”的章节中给出了对问题的出色描述:
通过计算机创建图形时,最好标记x和 带有“漂亮”数字的y轴:简单的十进制数字。例如,如果 数据范围是105到543,我们可能想要绘制范围 从100到600,每100个单位放刻度线。或者如果数据 范围是2.04到2.16,我们可能会绘制从2.00到2.20的范围 刻度线间距为0.05。人类善于选择这样的“好” 数字,但简单的算法不是。天真的标签选择 算法获取数据范围并将其划分为n个相等的间隔, 但这通常会导致丑陋的标签。我们在这里描述一个 生成漂亮的图形标签的简单方法。
主要观察结果是十进制中“最好”的数字是1, 2和5,以及这些数字的所有10倍幂。我们会用的 只有这样的数字用于刻度线间距,并在其中放置刻度线 嘀嗒间距的倍数......
我使用本书中的伪代码示例在Java中创建以下类:
public class NiceScale {
private double minPoint;
private double maxPoint;
private double maxTicks = 10;
private double tickSpacing;
private double range;
private double niceMin;
private double niceMax;
/**
* Instantiates a new instance of the NiceScale class.
*
* @param min the minimum data point on the axis
* @param max the maximum data point on the axis
*/
public NiceScale(double min, double max) {
this.minPoint = min;
this.maxPoint = max;
calculate();
}
/**
* Calculate and update values for tick spacing and nice
* minimum and maximum data points on the axis.
*/
private void calculate() {
this.range = niceNum(maxPoint - minPoint, false);
this.tickSpacing = niceNum(range / (maxTicks - 1), true);
this.niceMin =
Math.floor(minPoint / tickSpacing) * tickSpacing;
this.niceMax =
Math.ceil(maxPoint / tickSpacing) * tickSpacing;
}
/**
* Returns a "nice" number approximately equal to range Rounds
* the number if round = true Takes the ceiling if round = false.
*
* @param range the data range
* @param round whether to round the result
* @return a "nice" number to be used for the data range
*/
private double niceNum(double range, boolean round) {
double exponent; /** exponent of range */
double fraction; /** fractional part of range */
double niceFraction; /** nice, rounded fraction */
exponent = Math.floor(Math.log10(range));
fraction = range / Math.pow(10, exponent);
if (round) {
if (fraction < 1.5)
niceFraction = 1;
else if (fraction < 3)
niceFraction = 2;
else if (fraction < 7)
niceFraction = 5;
else
niceFraction = 10;
} else {
if (fraction <= 1)
niceFraction = 1;
else if (fraction <= 2)
niceFraction = 2;
else if (fraction <= 5)
niceFraction = 5;
else
niceFraction = 10;
}
return niceFraction * Math.pow(10, exponent);
}
/**
* Sets the minimum and maximum data points for the axis.
*
* @param minPoint the minimum data point on the axis
* @param maxPoint the maximum data point on the axis
*/
public void setMinMaxPoints(double minPoint, double maxPoint) {
this.minPoint = minPoint;
this.maxPoint = maxPoint;
calculate();
}
/**
* Sets maximum number of tick marks we're comfortable with
*
* @param maxTicks the maximum number of tick marks for the axis
*/
public void setMaxTicks(double maxTicks) {
this.maxTicks = maxTicks;
calculate();
}
}
然后我们可以使用上面这样的代码:
NiceScale numScale = new NiceScale(-0.085, 0.173);
System.out.println("Tick Spacing:\t" + numScale.getTickSpacing());
System.out.println("Nice Minimum:\t" + numScale.getNiceMin());
System.out.println("Nice Maximum:\t" + numScale.getNiceMax());
然后输出格式正确的数字,以便在需要创建漂亮比例的任何应用程序中使用。 = d
Tick Spacing: 0.05
Nice Minimum: -0.1
Nice Maximum: 0.2
答案 1 :(得分:4)
我已根据我的要求将上述java代码转换为Python。
import math
class NiceScale:
def __init__(self, minv,maxv):
self.maxTicks = 6
self.tickSpacing = 0
self.lst = 10
self.niceMin = 0
self.niceMax = 0
self.minPoint = minv
self.maxPoint = maxv
self.calculate()
def calculate(self):
self.lst = self.niceNum(self.maxPoint - self.minPoint, False)
self.tickSpacing = self.niceNum(self.lst / (self.maxTicks - 1), True)
self.niceMin = math.floor(self.minPoint / self.tickSpacing) * self.tickSpacing
self.niceMax = math.ceil(self.maxPoint / self.tickSpacing) * self.tickSpacing
def niceNum(self, lst, rround):
self.lst = lst
exponent = 0 # exponent of range */
fraction = 0 # fractional part of range */
niceFraction = 0 # nice, rounded fraction */
exponent = math.floor(math.log10(self.lst));
fraction = self.lst / math.pow(10, exponent);
if (self.lst):
if (fraction < 1.5):
niceFraction = 1
elif (fraction < 3):
niceFraction = 2
elif (fraction < 7):
niceFraction = 5;
else:
niceFraction = 10;
else :
if (fraction <= 1):
niceFraction = 1
elif (fraction <= 2):
niceFraction = 2
elif (fraction <= 5):
niceFraction = 5
else:
niceFraction = 10
return niceFraction * math.pow(10, exponent)
def setMinMaxPoints(self, minPoint, maxPoint):
self.minPoint = minPoint
self.maxPoint = maxPoint
self.calculate()
def setMaxTicks(self, maxTicks):
self.maxTicks = maxTicks;
self.calculate()
a=NiceScale(14024, 17756)
print "a.lst ", a.lst
print "a.maxPoint ", a.maxPoint
print "a.maxTicks ", a.maxTicks
print "a.minPoint ", a.minPoint
print "a.niceMax ", a.niceMax
print "a.niceMin ", a.niceMin
print "a.tickSpacing ", a.tickSpacing
答案 2 :(得分:4)
您应该能够使用Java实现进行微小更正。
将maxticks更改为5。
将计算方法更改为:
private void calculate() {
this.range = niceNum(maxPoint - minPoint, false);
this.tickSpacing = niceNum(range / (maxTicks - 1), true);
this.niceMin =
Math.floor(minPoint / tickSpacing) * tickSpacing;
this.niceMax = this.niceMin + tickSpacing * (maxticks - 1); // Always display maxticks
}
免责声明:请注意,我没有对此进行测试,因此您可能需要调整它以使其看起来不错。我建议的解决方案在图表顶部增加了额外的空间,以便为5个刻度留出空间。在某些情况下,这可能看起来很丑陋。
答案 3 :(得分:4)
这是一个javascript版本:
var minPoint;
var maxPoint;
var maxTicks = 10;
var tickSpacing;
var range;
var niceMin;
var niceMax;
/**
* Instantiates a new instance of the NiceScale class.
*
* min the minimum data point on the axis
* max the maximum data point on the axis
*/
function niceScale( min, max) {
minPoint = min;
maxPoint = max;
calculate();
return {
tickSpacing: tickSpacing,
niceMinimum: niceMin,
niceMaximum: niceMax
};
}
/**
* Calculate and update values for tick spacing and nice
* minimum and maximum data points on the axis.
*/
function calculate() {
range = niceNum(maxPoint - minPoint, false);
tickSpacing = niceNum(range / (maxTicks - 1), true);
niceMin =
Math.floor(minPoint / tickSpacing) * tickSpacing;
niceMax =
Math.ceil(maxPoint / tickSpacing) * tickSpacing;
}
/**
* Returns a "nice" number approximately equal to range Rounds
* the number if round = true Takes the ceiling if round = false.
*
* localRange the data range
* round whether to round the result
* a "nice" number to be used for the data range
*/
function niceNum( localRange, round) {
var exponent; /** exponent of localRange */
var fraction; /** fractional part of localRange */
var niceFraction; /** nice, rounded fraction */
exponent = Math.floor(Math.log10(localRange));
fraction = localRange / Math.pow(10, exponent);
if (round) {
if (fraction < 1.5)
niceFraction = 1;
else if (fraction < 3)
niceFraction = 2;
else if (fraction < 7)
niceFraction = 5;
else
niceFraction = 10;
} else {
if (fraction <= 1)
niceFraction = 1;
else if (fraction <= 2)
niceFraction = 2;
else if (fraction <= 5)
niceFraction = 5;
else
niceFraction = 10;
}
return niceFraction * Math.pow(10, exponent);
}
/**
* Sets the minimum and maximum data points for the axis.
*
* minPoint the minimum data point on the axis
* maxPoint the maximum data point on the axis
*/
function setMinMaxPoints( localMinPoint, localMaxPoint) {
minPoint = localMinPoint;
maxPoint = localMaxoint;
calculate();
}
/**
* Sets maximum number of tick marks we're comfortable with
*
* maxTicks the maximum number of tick marks for the axis
*/
function setMaxTicks(localMaxTicks) {
maxTicks = localMaxTicks;
calculate();
}
享受!
答案 4 :(得分:2)
Objective C中的内容与此相同
YFRNiceScale.h
#import <Foundation/Foundation.h>
@interface YFRNiceScale : NSObject
@property (nonatomic, readonly) CGFloat minPoint;
@property (nonatomic, readonly) CGFloat maxPoint;
@property (nonatomic, readonly) CGFloat maxTicks;
@property (nonatomic, readonly) CGFloat tickSpacing;
@property (nonatomic, readonly) CGFloat range;
@property (nonatomic, readonly) CGFloat niceRange;
@property (nonatomic, readonly) CGFloat niceMin;
@property (nonatomic, readonly) CGFloat niceMax;
- (id) initWithMin: (CGFloat) min andMax: (CGFloat) max;
- (id) initWithNSMin: (NSDecimalNumber*) min andNSMax: (NSDecimalNumber*) max;
@end
YFRNiceScale.m
#import "YFRNiceScale.h"
@implementation YFRNiceScale
@synthesize minPoint = _minPoint;
@synthesize maxPoint = _maxPoint;
@synthesize maxTicks = _maxTicks;
@synthesize tickSpacing = _tickSpacing;
@synthesize range = _range;
@synthesize niceRange = _niceRange;
@synthesize niceMin = _niceMin;
@synthesize niceMax = _niceMax;
- (id)init {
self = [super init];
if (self) {
}
return self;
}
- (id) initWithMin: (CGFloat) min andMax: (CGFloat) max {
if (self) {
_maxTicks = 10;
_minPoint = min;
_maxPoint = max;
[self calculate];
}
return [self init];
}
- (id) initWithNSMin: (NSDecimalNumber*) min andNSMax: (NSDecimalNumber*) max {
if (self) {
_maxTicks = 10;
_minPoint = [min doubleValue];
_maxPoint = [max doubleValue];
[self calculate];
}
return [self init];
}
/**
* Calculate and update values for tick spacing and nice minimum and maximum
* data points on the axis.
*/
- (void) calculate {
_range = [self niceNumRange: (_maxPoint-_minPoint) roundResult:NO];
_tickSpacing = [self niceNumRange: (_range / (_maxTicks - 1)) roundResult:YES];
_niceMin = floor(_minPoint / _tickSpacing) * _tickSpacing;
_niceMax = ceil(_maxPoint / _tickSpacing) * _tickSpacing;
_niceRange = _niceMax - _niceMin;
}
/**
* Returns a "nice" number approximately equal to range Rounds the number if
* round = true Takes the ceiling if round = false.
*
* @param range
* the data range
* @param round
* whether to round the result
* @return a "nice" number to be used for the data range
*/
- (CGFloat) niceNumRange:(CGFloat) aRange roundResult:(BOOL) round {
CGFloat exponent;
CGFloat fraction;
CGFloat niceFraction;
exponent = floor(log10(aRange));
fraction = aRange / pow(10, exponent);
if (round) {
if (fraction < 1.5) {
niceFraction = 1;
} else if (fraction < 3) {
niceFraction = 2;
} else if (fraction < 7) {
niceFraction = 5;
} else {
niceFraction = 10;
}
} else {
if (fraction <= 1) {
niceFraction = 1;
} else if (fraction <= 2) {
niceFraction = 2;
} else if (fraction <= 5) {
niceFraction = 2;
} else {
niceFraction = 10;
}
}
return niceFraction * pow(10, exponent);
}
- (NSString*) description {
return [NSString stringWithFormat:@"NiceScale [minPoint=%.2f, maxPoint=%.2f, maxTicks=%.2f, tickSpacing=%.2f, range=%.2f, niceMin=%.2f, niceMax=%.2f]", _minPoint, _maxPoint, _maxTicks, _tickSpacing, _range, _niceMin, _niceMax ];
}
@end
用法:
YFRNiceScale* niceScale = [[YFRNiceScale alloc] initWithMin:0 andMax:500];
NSLog(@"Nice: %@", niceScale);
答案 5 :(得分:2)
我在编写一些php时发现了这个帖子,所以现在php中也可以使用相同的代码!
class CNiceScale {
private $minPoint;
private $maxPoint;
private $maxTicks = 10;
private $tickSpacing;
private $range;
private $niceMin;
private $niceMax;
public function setScale($min, $max) {
$this->minPoint = $min;
$this->maxPoint = $max;
$this->calculate();
}
private function calculate() {
$this->range = $this->niceNum($this->maxPoint - $this->minPoint, false);
$this->tickSpacing = $this->niceNum($this->range / ($this->maxTicks - 1), true);
$this->niceMin = floor($this->minPoint / $this->tickSpacing) * $this->tickSpacing;
$this->niceMax = ceil($this->maxPoint / $this->tickSpacing) * $this->tickSpacing;
}
private function niceNum($range, $round) {
$exponent; /** exponent of range */
$fraction; /** fractional part of range */
$niceFraction; /** nice, rounded fraction */
$exponent = floor(log10($range));
$fraction = $range / pow(10, $exponent);
if ($round) {
if ($fraction < 1.5)
$niceFraction = 1;
else if ($fraction < 3)
$niceFraction = 2;
else if ($fraction < 7)
$niceFraction = 5;
else
$niceFraction = 10;
} else {
if ($fraction <= 1)
$niceFraction = 1;
else if ($fraction <= 2)
$niceFraction = 2;
else if ($fraction <= 5)
$niceFraction = 5;
else
$niceFraction = 10;
}
return $niceFraction * pow(10, $exponent);
}
public function setMinMaxPoints($minPoint, $maxPoint) {
$this->minPoint = $minPoint;
$this->maxPoint = $maxPoint;
$this->calculate();
}
public function setMaxTicks($maxTicks) {
$this->maxTicks = $maxTicks;
$this->calculate();
}
public function getTickSpacing() {
return $this->tickSpacing;
}
public function getNiceMin() {
return $this->niceMin;
}
public function getNiceMax() {
return $this->niceMax;
}
}
class CNiceScale {
private $minPoint;
private $maxPoint;
private $maxTicks = 10;
private $tickSpacing;
private $range;
private $niceMin;
private $niceMax;
public function setScale($min, $max) {
$this->minPoint = $min;
$this->maxPoint = $max;
$this->calculate();
}
private function calculate() {
$this->range = $this->niceNum($this->maxPoint - $this->minPoint, false);
$this->tickSpacing = $this->niceNum($this->range / ($this->maxTicks - 1), true);
$this->niceMin = floor($this->minPoint / $this->tickSpacing) * $this->tickSpacing;
$this->niceMax = ceil($this->maxPoint / $this->tickSpacing) * $this->tickSpacing;
}
private function niceNum($range, $round) {
$exponent; /** exponent of range */
$fraction; /** fractional part of range */
$niceFraction; /** nice, rounded fraction */
$exponent = floor(log10($range));
$fraction = $range / pow(10, $exponent);
if ($round) {
if ($fraction < 1.5)
$niceFraction = 1;
else if ($fraction < 3)
$niceFraction = 2;
else if ($fraction < 7)
$niceFraction = 5;
else
$niceFraction = 10;
} else {
if ($fraction <= 1)
$niceFraction = 1;
else if ($fraction <= 2)
$niceFraction = 2;
else if ($fraction <= 5)
$niceFraction = 5;
else
$niceFraction = 10;
}
return $niceFraction * pow(10, $exponent);
}
public function setMinMaxPoints($minPoint, $maxPoint) {
$this->minPoint = $minPoint;
$this->maxPoint = $maxPoint;
$this->calculate();
}
public function setMaxTicks($maxTicks) {
$this->maxTicks = $maxTicks;
$this->calculate();
}
public function getTickSpacing() {
return $this->tickSpacing;
}
public function getNiceMin() {
return $this->niceMin;
}
public function getNiceMax() {
return $this->niceMax;
}
}
答案 6 :(得分:2)
我需要将此算法转换为C#,所以这里是......
public static class NiceScale {
public static void Calculate(double min, double max, int maxTicks, out double range, out double tickSpacing, out double niceMin, out double niceMax) {
range = niceNum(max - min, false);
tickSpacing = niceNum(range / (maxTicks - 1), true);
niceMin = Math.Floor(min / tickSpacing) * tickSpacing;
niceMax = Math.Ceiling(max / tickSpacing) * tickSpacing;
}
private static double niceNum(double range, bool round) {
double pow = Math.Pow(10, Math.Floor(Math.Log10(range)));
double fraction = range / pow;
double niceFraction;
if (round) {
if (fraction < 1.5) {
niceFraction = 1;
} else if (fraction < 3) {
niceFraction = 2;
} else if (fraction < 7) {
niceFraction = 5;
} else {
niceFraction = 10;
}
} else {
if (fraction <= 1) {
niceFraction = 1;
} else if (fraction <= 2) {
niceFraction = 2;
} else if (fraction <= 5) {
niceFraction = 5;
} else {
niceFraction = 10;
}
}
return niceFraction * pow;
}
}
答案 7 :(得分:1)
由于每个人和他的狗都在发布其他流行语言的翻译,因此这是我Nimrod programming language的版本。我还添加了对滴答数小于2的情况的处理:
import math, strutils
const
defaultMaxTicks = 10
type NiceScale = object
minPoint: float
maxPoint: float
maxTicks: int
tickSpacing: float
niceMin: float
niceMax: float
proc ff(x: float): string =
result = x.formatFloat(ffDecimal, 3)
proc `$`*(x: NiceScale): string =
result = "Input minPoint: " & x.minPoint.ff &
"\nInput maxPoint: " & x.maxPoint.ff &
"\nInput maxTicks: " & $x.maxTicks &
"\nOutput niceMin: " & x.niceMin.ff &
"\nOutput niceMax: " & x.niceMax.ff &
"\nOutput tickSpacing: " & x.tickSpacing.ff &
"\n"
proc calculate*(x: var NiceScale)
proc init*(x: var NiceScale; minPoint, maxPoint: float;
maxTicks = defaultMaxTicks) =
x.minPoint = minPoint
x.maxPoint = maxPoint
x.maxTicks = maxTicks
x.calculate
proc initScale*(minPoint, maxPoint: float;
maxTicks = defaultMaxTicks): NiceScale =
result.init(minPoint, maxPoint, maxTicks)
proc niceNum(scaleRange: float; doRound: bool): float =
var
exponent: float ## Exponent of scaleRange.
fraction: float ## Fractional part of scaleRange.
niceFraction: float ## Nice, rounded fraction.
exponent = floor(log10(scaleRange));
fraction = scaleRange / pow(10, exponent);
if doRound:
if fraction < 1.5:
niceFraction = 1
elif fraction < 3:
niceFraction = 2
elif fraction < 7:
niceFraction = 5
else:
niceFraction = 10
else:
if fraction <= 1:
niceFraction = 1
elif fraction <= 2:
niceFraction = 2
elif fraction <= 5:
niceFraction = 5
else:
niceFraction = 10
return niceFraction * pow(10, exponent)
proc calculate*(x: var NiceScale) =
assert x.maxPoint > x.minPoint, "Wrong input range!"
assert x.maxTicks >= 0, "Sorry, can't have imaginary ticks!"
let scaleRange = niceNum(x.maxPoint - x.minPoint, false)
if x.maxTicks < 2:
x.niceMin = floor(x.minPoint)
x.niceMax = ceil(x.maxPoint)
x.tickSpacing = (x.niceMax - x.niceMin) /
(if x.maxTicks == 1: 2.0 else: 1.0)
else:
x.tickSpacing = niceNum(scaleRange / (float(x.maxTicks - 1)), true)
x.niceMin = floor(x.minPoint / x.tickSpacing) * x.tickSpacing
x.niceMax = ceil(x.maxPoint / x.tickSpacing) * x.tickSpacing
when isMainModule:
var s = initScale(57.2, 103.3)
echo s
这是评论剥离版本。可以在GitHub集成到我的项目中阅读完整版。
答案 8 :(得分:1)
这是Swift版本:
class NiceScale {
private var minPoint: Double
private var maxPoint: Double
private var maxTicks = 10
private(set) var tickSpacing: Double = 0
private(set) var range: Double = 0
private(set) var niceMin: Double = 0
private(set) var niceMax: Double = 0
init(min: Double, max: Double) {
minPoint = min
maxPoint = max
calculate()
}
func setMinMaxPoints(min: Double, max: Double) {
minPoint = min
maxPoint = max
calculate()
}
private func calculate() {
range = niceNum(maxPoint - minPoint, round: false)
tickSpacing = niceNum(range / Double((maxTicks - 1)), round: true)
niceMin = floor(minPoint / tickSpacing) * tickSpacing
niceMax = floor(maxPoint / tickSpacing) * tickSpacing
}
private func niceNum(range: Double, round: Bool) -> Double {
let exponent = floor(log10(range))
let fraction = range / pow(10, exponent)
let niceFraction: Double
if round {
if fraction <= 1.5 {
niceFraction = 1
} else if fraction <= 3 {
niceFraction = 2
} else if fraction <= 7 {
niceFraction = 5
} else {
niceFraction = 10
}
} else {
if fraction <= 1 {
niceFraction = 1
} else if fraction <= 2 {
niceFraction = 2
} else if fraction <= 5 {
niceFraction = 5
} else {
niceFraction = 10
}
}
return niceFraction * pow(10, exponent)
}
}
答案 9 :(得分:1)
//Swift,更紧凑
public struct NiceScale
{
var minPoint: Double
var maxPoint: Double
var maxTicks = 10
var tickSpacing: Double { niceNum(range: range / Double(maxTicks - 1), round: true) }
var range: Double { niceNum(range: maxPoint - minPoint, round: false) }
var niceMin: Double { floor(minPoint / tickSpacing) * tickSpacing }
var niceMax: Double { ceil(maxPoint / tickSpacing) * tickSpacing }
// min the minimum data point on the axis
// max the maximum data point on the axis
init( min: Double, max: Double, maxTicks: Int = 10)
{
minPoint = min
maxPoint = max
self.maxTicks = maxTicks
}
/**
* Returns a "nice" number approximately equal to range Rounds
* the number if round = true Takes the ceiling
* if round = false range the data range
* round whether to round the result
* return a "nice" number to be used for the data range
*/
func niceNum( range: Double, round: Bool) -> Double
{
let exponent: Double = floor(log10(range)) // exponent of range
let fraction: Double = range / pow(10, exponent) // fractional part of range
var niceFraction: Double = 10.0 // nice, rounded fraction
if round {
if fraction < 1.5 { niceFraction = 1 }
else if fraction < 3 { niceFraction = 2 }
else if fraction < 7 { niceFraction = 5 }
} else {
if fraction <= 1 { niceFraction = 1 }
else if fraction <= 2 { niceFraction = 2 }
else if fraction <= 5 { niceFraction = 5 }
}
return niceFraction * pow(10, exponent)
}
static func testNiceScale()
{
var numScale = NiceScale(min: -0.085, max: 0.173)
print("Tick Spacing:\t \( numScale.tickSpacing)")
print("Nice Minimum:\t\( numScale.niceMin)")
print("Nice Maximum:\t\( numScale.niceMax)")
numScale = NiceScale(min: 4.44, max: 7.962)
print("nice num:\t\( numScale.niceNum(range: 7.962 - 4.44, round: false))")
print("Tick Spacing:\t\( numScale.tickSpacing)")
print("Nice Minimum:\t\( numScale.niceMin)")
print("Nice Maximum:\t\( numScale.niceMax)")
}
} <\pre> <\code>
答案 10 :(得分:1)
这是Kotlin版本!
import java.lang.Math.*
/**
* Instantiates a new instance of the NiceScale class.
*
* @param min Double The minimum data point.
* @param max Double The maximum data point.
*/
class NiceScale(private var minPoint: Double, private var maxPoint: Double) {
private var maxTicks = 15.0
private var range: Double = 0.0
var niceMin: Double = 0.0
var niceMax: Double = 0.0
var tickSpacing: Double = 0.0
init {
calculate()
}
/**
* Calculate and update values for tick spacing and nice
* minimum and maximum data points on the axis.
*/
private fun calculate() {
range = niceNum(maxPoint - minPoint, false)
tickSpacing = niceNum(range / (maxTicks - 1), true)
niceMin = floor(minPoint / tickSpacing) * tickSpacing
niceMax = ceil(maxPoint / tickSpacing) * tickSpacing
}
/**
* Returns a "nice" number approximately equal to range. Rounds
* the number if round = true. Takes the ceiling if round = false.
*
* @param range Double The data range.
* @param round Boolean Whether to round the result.
* @return Double A "nice" number to be used for the data range.
*/
private fun niceNum(range: Double, round: Boolean): Double {
/** Exponent of range */
val exponent: Double = floor(log10(range))
/** Fractional part of range */
val fraction: Double
/** Nice, rounded fraction */
val niceFraction: Double
fraction = range / pow(10.0, exponent)
niceFraction = if (round) {
when {
fraction < 1.5 -> 1.0
fraction < 3 -> 2.0
fraction < 7 -> 5.0
else -> 10.0
}
} else {
when {
fraction <= 1 -> 1.0
fraction <= 2 -> 2.0
fraction <= 5 -> 5.0
else -> 10.0
}
}
return niceFraction * pow(10.0, exponent)
}
/**
* Sets the minimum and maximum data points.
*
* @param minPoint Double The minimum data point.
* @param maxPoint Double The maximum data point.
*/
fun setMinMaxPoints(minPoint: Double, maxPoint: Double) {
this.minPoint = minPoint
this.maxPoint = maxPoint
calculate()
}
/**
* Sets maximum number of tick marks we're comfortable with.
*
* @param maxTicks Double The maximum number of tick marks.
*/
fun setMaxTicks(maxTicks: Double) {
this.maxTicks = maxTicks
calculate()
}
}
答案 11 :(得分:0)
这是一个 Ruby 版本
class NiceScale
attr_accessor :min_point, :max_point
attr_reader :tick_spacing, :nice_min, :nice_max
def initialize(options = {})
@min_point = options[:min_point]
@max_point = options[:max_point]
@max_ticks = [(options[:max_ticks] || 5), 2].max
self.calculate
end
def calculate
range = nice_num(@max_point - @min_point, false)
@tick_spacing = nice_num(range / (@max_ticks - 1))
@nice_min = (@min_point / tick_spacing).floor * tick_spacing
@nice_max = (@max_point / tick_spacing).floor * tick_spacing
end
private
def nice_num(num, round = true)
num = num.to_f
exponent = num > 0 ? Math.log10(num).floor : 0
fraction = num / (10 ** exponent)
if round
if fraction < 1.5
nice_fraction = 1
elsif fraction < 3
nice_fraction = 2
elsif fraction < 7
nice_fraction = 5
else
nice_fraction = 10
end
else
if fraction <= 1
nice_fraction = 1
elsif fraction <= 2
nice_fraction = 2
elsif fraction <= 5
nice_fraction = 5
else
nice_fraction = 10
end
end
nice_fraction.to_f * (10 ** exponent)
end
end
答案 12 :(得分:0)
Dart / Flutter版本:
import 'dart:math';
void main() {
double min = 3, max = 28;
var scale = NiceScale(min, max, 5);
print("Range: $min-$max; Max Point: ${scale.niceMax}; Min Point: ${scale.niceMin}; Steps: ${scale.tickSpacing};");
}
class NiceScale {
double _niceMin, _niceMax;
double _tickSpacing;
double get tickSpacing { return _tickSpacing; }
double get niceMin{ return _niceMin; }
double get niceMax{ return _niceMax; }
double _minPoint, _maxPoint;
double _maxTicks;
double _range;
NiceScale(double minP, double maxP, double maxTicks){
this._minPoint = minP;
this._maxPoint = maxP;
this._maxTicks = maxTicks;
_calculate();
}
void _calculate(){
_range = _niceNum(_maxPoint - _minPoint, false);
_tickSpacing = _niceNum(_range / (_maxTicks - 1), true);
_niceMin = _calcMin();
_niceMax = _calcMax();
}
double _calcMin() {
int floored = (_minPoint / _tickSpacing).floor();
return floored * _tickSpacing;
}
double _calcMax() {
int ceiled = (_maxPoint / _tickSpacing).ceil();
return ceiled * _tickSpacing;
}
double _niceNum(double range, bool round){
double exponent; /** exponent of range */
double fraction; /** fractional part of range */
double niceFraction; /** nice, rounded fraction */
exponent = (log(range)/ln10).floor().toDouble();
fraction = range / pow(10, exponent);
if (round)
{
if (fraction < 1.5)
niceFraction = 1;
else if (fraction < 3)
niceFraction = 2;
else if (fraction < 7)
niceFraction = 5;
else
niceFraction = 10;
}
else
{
if (fraction <= 1)
niceFraction = 1;
else if (fraction <= 2)
niceFraction = 2;
else if (fraction <= 5)
niceFraction = 5;
else
niceFraction = 10;
}
return niceFraction * pow(10, exponent);
}
}
答案 13 :(得分:0)
很多更好和 SIMPLER 算法很快。大小是固定的,值不是“硬编码的”:
class NiceNumbers {
/// Returns nice range of specified size. Result min <= min argument, result max >= max argument.
static func getRange(forMin minInt: Int, max maxInt: Int, ofSize size: Int) -> [Int] {
let niceMinInt = getMinCloseToZero(min: minInt, max: maxInt)
let step = Double(maxInt - niceMinInt) / Double(size - 1)
let niceStepInt = Int(get(for: step, min: false))
var result = [Int]()
result.append(niceMinInt)
for i in 1...size - 1 {
result.append(niceMinInt + i * Int(niceStepInt))
}
return result
}
/// Returns nice min or zero if it is much smaller than max.
static func getMinCloseToZero(min: Int, max: Int) -> Int {
let nice = get(for: Double(min), min: true)
return nice <= (Double(max) / 10) ? 0 : Int(nice)
}
/// Get nice number. If min is true returns smaller number, if false - bigger one.
static func get(for number: Double, min: Bool) -> Double {
if number == 0 { return 0 }
let exponent = floor(log10(number)) - (min ? 0 : 1)
let fraction = number / pow(10, exponent)
let niceFraction = min ? floor(fraction) : ceil(fraction)
return niceFraction * pow(10, exponent)
}
}
仅对正数进行了测试。
答案 14 :(得分:0)
这是井井有条的C#代码。
public class NiceScale
{
public double NiceMin { get; set; }
public double NiceMax { get; set; }
public double TickSpacing { get; private set; }
private double _minPoint;
private double _maxPoint;
private double _maxTicks = 5;
private double _range;
/**
* Instantiates a new instance of the NiceScale class.
*
* @param min the minimum data point on the axis
* @param max the maximum data point on the axis
*/
public NiceScale(double min, double max)
{
_minPoint = min;
_maxPoint = max;
Calculate();
}
/**
* Calculate and update values for tick spacing and nice
* minimum and maximum data points on the axis.
*/
private void Calculate()
{
_range = NiceNum(_maxPoint - _minPoint, false);
TickSpacing = NiceNum(_range / (_maxTicks - 1), true);
NiceMin = Math.Floor(_minPoint / TickSpacing) * TickSpacing;
NiceMax = Math.Ceiling(_maxPoint / TickSpacing) * TickSpacing;
}
/**
* Returns a "nice" number approximately equal to range Rounds
* the number if round = true Takes the ceiling if round = false.
*
* @param range the data range
* @param round whether to round the result
* @return a "nice" number to be used for the data range
*/
private double NiceNum(double range, bool round)
{
double exponent; /** exponent of range */
double fraction; /** fractional part of range */
double niceFraction; /** nice, rounded fraction */
exponent = Math.Floor(Math.Log10(range));
fraction = range / Math.Pow(10, exponent);
if (round) {
if (fraction < 1.5)
niceFraction = 1;
else if (fraction < 3)
niceFraction = 2;
else if (fraction < 7)
niceFraction = 5;
else
niceFraction = 10;
} else {
if (fraction <= 1)
niceFraction = 1;
else if (fraction <= 2)
niceFraction = 2;
else if (fraction <= 5)
niceFraction = 5;
else
niceFraction = 10;
}
return niceFraction * Math.Pow(10, exponent);
}
/**
* Sets the minimum and maximum data points for the axis.
*
* @param minPoint the minimum data point on the axis
* @param maxPoint the maximum data point on the axis
*/
public void SetMinMaxPoints(double minPoint, double maxPoint)
{
_minPoint = minPoint;
_maxPoint = maxPoint;
Calculate();
}
/**
* Sets maximum number of tick marks we're comfortable with
*
* @param maxTicks the maximum number of tick marks for the axis
*/
public void SetMaxTicks(double maxTicks)
{
_maxTicks = maxTicks;
Calculate();
}
}
答案 15 :(得分:0)
这是TypeScript!
/**
* Calculate and update values for tick spacing and nice
* minimum and maximum data points on the axis.
*/
function calculateTicks(maxTicks: number, minPoint: number, maxPoint: number): [number, number, number] {
let range = niceNum(maxPoint - minPoint, false);
let tickSpacing = niceNum(range / (maxTicks - 1), true);
let niceMin = Math.floor(minPoint / tickSpacing) * tickSpacing;
let niceMax = Math.ceil(maxPoint / tickSpacing) * tickSpacing;
let tickCount = range / tickSpacing;
return [tickCount, niceMin, niceMax];
}
/**
* Returns a "nice" number approximately equal to range Rounds
* the number if round = true Takes the ceiling if round = false.
*
* @param range the data range
* @param round whether to round the result
* @return a "nice" number to be used for the data range
*/
function niceNum(range: number, round: boolean): number {
let exponent: number;
/** exponent of range */
let fraction: number;
/** fractional part of range */
let niceFraction: number;
/** nice, rounded fraction */
exponent = Math.floor(Math.log10(range));
fraction = range / Math.pow(10, exponent);
if (round) {
if (fraction < 1.5)
niceFraction = 1;
else if (fraction < 3)
niceFraction = 2;
else if (fraction < 7)
niceFraction = 5;
else
niceFraction = 10;
} else {
if (fraction <= 1)
niceFraction = 1;
else if (fraction <= 2)
niceFraction = 2;
else if (fraction <= 5)
niceFraction = 5;
else
niceFraction = 10;
}
return niceFraction * Math.pow(10, exponent);
}
答案 16 :(得分:0)
这是VB.NET版本。
Public Class NiceScale
Private minPoint As Double
Private maxPoint As Double
Private maxTicks As Double = 10
Private tickSpacing
Private range As Double
Private niceMin As Double
Private niceMax As Double
Public Sub New(min As Double, max As Double)
minPoint = min
maxPoint = max
calculate()
End Sub
Private Sub calculate()
range = niceNum(maxPoint - minPoint, False)
tickSpacing = niceNum(range / (maxTicks - 1), True)
niceMin = Math.Floor(minPoint / tickSpacing) * tickSpacing
niceMax = Math.Ceiling(maxPoint / tickSpacing) * tickSpacing
End Sub
Private Function niceNum(range As Double, round As Boolean) As Double
Dim exponent As Double '/** exponent of range */
Dim fraction As Double '/** fractional part of range */
Dim niceFraction As Double '/** nice, rounded fraction */
exponent = Math.Floor(Math.Log10(range))
fraction = range / Math.Pow(10, exponent)
If round Then
If (fraction < 1.5) Then
niceFraction = 1
ElseIf (fraction < 3) Then
niceFraction = 2
ElseIf (fraction < 7) Then
niceFraction = 5
Else
niceFraction = 10
End If
Else
If (fraction <= 1) Then
niceFraction = 1
ElseIf (fraction <= 2) Then
niceFraction = 2
ElseIf (fraction <= 5) Then
niceFraction = 5
Else
niceFraction = 10
End If
End If
Return niceFraction * Math.Pow(10, exponent)
End Function
Public Sub setMinMaxPoints(minPoint As Double, maxPoint As Double)
minPoint = minPoint
maxPoint = maxPoint
calculate()
End Sub
Public Sub setMaxTicks(maxTicks As Double)
maxTicks = maxTicks
calculate()
End Sub
Public Function getTickSpacing() As Double
Return tickSpacing
End Function
Public Function getNiceMin() As Double
Return niceMin
End Function
Public Function getNiceMax() As Double
Return niceMax
End Function
End Class