有没有办法对此进行矢量化?
waveheight=zeros(10000)
for t in range(10000):
for j in range(N_frequencysteps):
waveheight[t] = waveheight[t] + (Abs_S_newwave[j] * cos (K[j] * x - (omega[j] * ((t*0.01) - TimeShift)) + TSi_omega[j] + arg_S_newwave[j]))
答案 0 :(得分:5)
waveheight = (Abs_S_newwave[:,None] * cos(K[:,None] * x - (omega[:,None] * ((arange(10000)[None,:]*0.01) - TimeShift)) + TSi_omega[:,None] + arg_S_newwave[:,None])).sum(axis=0)
如果所有长度为N_frequencysteps
的数组都是1-D numpy数组,则此方法有效。
答案 1 :(得分:0)
至少有一步向量化不会迭代waveheight
的元素:
waveheight=zeros(10000)
ts = arange(10000)
for j in range(N_frequencysteps):
waveheight += (Abs_S_newwave[j] * cos(K[j] * x - (omega[j] *
((ts*0.01) - TimeShift)) + TSi_omega[j] + arg_S_newwave[j]))
这假设所有其他变量都是标量。