我正在尝试找出从R生成JSON文件的最佳方法。我在tmp
中有以下数据框R
。
> tmp
gender age welcoming proud tidy unique
1 1 30 4 4 4 4
2 2 34 4 2 4 4
3 1 34 5 3 4 5
4 2 33 2 3 2 4
5 2 28 4 3 4 4
6 2 26 3 2 4 3
dput(tmp)
的输出如下:
tmp <- structure(list(gender = c(1L, 2L, 1L, 2L, 2L, 2L), age = c(30,
34, 34, 33, 28, 26), welcoming = c(4L, 4L, 5L, 2L, 4L, 3L), proud = c(4L,
2L, 3L, 3L, 3L, 2L), tidy = c(4L, 4L, 4L, 2L, 4L, 4L), unique = c(4L,
4L, 5L, 4L, 4L, 3L)), .Names = c("gender", "age", "welcoming",
"proud", "tidy", "unique"), na.action = structure(c(15L, 39L,
60L, 77L, 88L, 128L, 132L, 172L, 272L, 304L, 305L, 317L, 328L,
409L, 447L, 512L, 527L, 605L, 618L, 657L, 665L, 670L, 708L, 709L,
729L, 746L, 795L, 803L, 826L, 855L, 898L, 911L, 957L, 967L, 983L,
984L, 988L, 1006L, 1161L, 1162L, 1224L, 1245L, 1256L, 1257L,
1307L, 1374L, 1379L, 1386L, 1387L, 1394L, 1401L, 1408L, 1434L,
1446L, 1509L, 1556L, 1650L, 1717L, 1760L, 1782L, 1814L, 1847L,
1863L, 1909L, 1930L, 1971L, 2004L, 2022L, 2055L, 2060L, 2065L,
2082L, 2109L, 2121L, 2145L, 2158L, 2159L, 2226L, 2227L, 2281L
), .Names = c("15", "39", "60", "77", "88", "128", "132", "172",
"272", "304", "305", "317", "328", "409", "447", "512", "527",
"605", "618", "657", "665", "670", "708", "709", "729", "746",
"795", "803", "826", "855", "898", "911", "957", "967", "983",
"984", "988", "1006", "1161", "1162", "1224", "1245", "1256",
"1257", "1307", "1374", "1379", "1386", "1387", "1394", "1401",
"1408", "1434", "1446", "1509", "1556", "1650", "1717", "1760",
"1782", "1814", "1847", "1863", "1909", "1930", "1971", "2004",
"2022", "2055", "2060", "2065", "2082", "2109", "2121", "2145",
"2158", "2159", "2226", "2227", "2281"), class = "omit"), row.names = c(NA,
6L), class = "data.frame")
使用rjson
包,运行生成以下JSON文件的行toJSON(tmp)
:
{"gender":[1,2,1,2,2,2],
"age":[30,34,34,33,28,26],
"welcoming":[4,4,5,2,4,3],
"proud":[4,2,3,3,3,2],
"tidy":[4,4,4,2,4,4],
"unique":[4,4,5,4,4,3]}
我还尝试了RJSONIO
包; toJSON()
的输出是相同的。我想要产生的是以下结构:
{"traits":["gender","age","welcoming","proud", "tidy", "unique"],
"values":[
{"gender":1,"age":30,"welcoming":4,"proud":4,"tidy":4, "unique":4},
{"gender":2,"age":34,"welcoming":4,"proud":2,"tidy":4, "unique":4},
....
]
我不确定如何做到最好。我意识到我可以使用python
逐行解析它但我觉得可能有更好的方法来做到这一点。我也意识到R
中的数据结构并不反映我JSON
文件中所需的元信息(特别是traits
行),但我主要对生成数据格式感兴趣喜欢这行
{"gender":1,"age":30,"welcoming":4,"proud":4,"tidy":4, "unique":4}
因为我可以手动添加第一行。
toJSONarray <- function(dtf){
clnms <- colnames(dtf)
name.value <- function(i){
quote <- '';
# if(class(dtf[, i])!='numeric'){
if(class(dtf[, i])!='numeric' && class(dtf[, i])!= 'integer'){ # I modified this line so integers are also not enclosed in quotes
quote <- '"';
}
paste('"', i, '" : ', quote, dtf[,i], quote, sep='')
}
objs <- apply(sapply(clnms, name.value), 1, function(x){paste(x, collapse=', ')})
objs <- paste('{', objs, '}')
# res <- paste('[', paste(objs, collapse=', '), ']')
res <- paste('[', paste(objs, collapse=',\n'), ']') # added newline for formatting output
return(res)
}
答案 0 :(得分:14)
根据Andrie关于apply
的想法,您可以在调用tmp
之前修改toJSON
变量,从而获得您想要的内容。
library(RJSONIO)
modified <- list(
traits = colnames(tmp),
values = unname(apply(tmp, 1, function(x) as.data.frame(t(x))))
)
cat(toJSON(modified))
答案 1 :(得分:9)
进一步构建Andrie和Richie的想法,使用alply
代替apply
,以避免将数字转换为字符:
library(RJSONIO)
library(plyr)
modified <- list(
traits = colnames(tmp),
values = unname(alply(tmp, 1, identity))
)
cat(toJSON(modified))
plyr的alply
与apply
类似,但会自动返回一个列表;而在Richie Cotton的答案中没有更复杂的函数,apply
会返回一个向量或数组。这些额外的步骤,包括t
,意味着如果您的数据集有任何非数字列,则数字将转换为字符串。
因此,使用alply
可以避免这种担忧。
例如,带上您的tmp
数据集并添加
tmp$grade <- c("A","B","C","D","E","F")
然后将此代码(使用alply
)与另一个示例(使用apply
)进行比较。
答案 2 :(得分:9)
使用包jsonlite
:
> jsonlite::toJSON(list(traits = names(tmp), values = tmp), pretty = TRUE)
{
"traits": ["gender", "age", "welcoming", "proud", "tidy", "unique"],
"values": [
{
"gender": 1,
"age": 30,
"welcoming": 4,
"proud": 4,
"tidy": 4,
"unique": 4
},
{
"gender": 2,
"age": 34,
"welcoming": 4,
"proud": 2,
"tidy": 4,
"unique": 4
},
{
"gender": 1,
"age": 34,
"welcoming": 5,
"proud": 3,
"tidy": 4,
"unique": 5
},
{
"gender": 2,
"age": 33,
"welcoming": 2,
"proud": 3,
"tidy": 2,
"unique": 4
},
{
"gender": 2,
"age": 28,
"welcoming": 4,
"proud": 3,
"tidy": 4,
"unique": 4
},
{
"gender": 2,
"age": 26,
"welcoming": 3,
"proud": 2,
"tidy": 4,
"unique": 3
}
]
}
答案 3 :(得分:4)
在我看来,您可以通过使用相应的data.frame
语句将apply
的每一行发送到JSON来实现此目的。
对于单行:
library(RJSONIO)
> x <- toJSON(tmp[1, ])
> cat(x)
{
"gender": 1,
"age": 30,
"welcoming": 4,
"proud": 4,
"tidy": 4,
"unique": 4
}
整个data.frame
:
x <- apply(tmp, 1, toJSON)
cat(x)
{
"gender": 1,
"age": 30,
"welcoming": 4,
"proud": 4,
"tidy": 4,
"unique": 4
} {
...
} {
"gender": 2,
"age": 26,
"welcoming": 3,
"proud": 2,
"tidy": 4,
"unique": 3
}
答案 4 :(得分:2)
另一种选择是使用split
将带有N行的data.frame
拆分为N行数据,包含1行。
library(RJSONIO)
modified <- list(
traits = colnames(tmp),
values = split(tmp, seq_len(nrow(tmp)))
)
cat(toJSON(modified))