我遇到了一些理论问题。在一段代码中,我维护着一组像
这样的宏#define MAX_OF_2(a, b) (a) > (b) ? (a) : (b)
#define MAX_OF_3(a, b, c) MAX_OF_2(MAX_OF_2(a, b), c)
#define MAX_OF_4(a, b, c, d) MAX_OF_2(MAX_OF_3(a, b, c), d)
...etc up to MAX_OF_8
我想做的是用以下内容替换它们:
/* Base case #1, single input */
#define MAX_OF_N(x) (x)
/* Base case #2, two inputs */
#define MAX_OF_N(x, y) (x) > (y) ? (x) : (y)
/* Recursive definition, arbitrary number of inputs */
#define MAX_OF_N(x, ...) MAX_OF_N(x, MAX_OF_N(__VA_ARGS__))
...当然,这不是有效的预处理器代码。
忽略这个特殊情况应该使用函数而不是预处理器宏来解决,是否可以定义一个可变的MAX_OF_N()宏?
为了清楚起见,最终结果应该是一个宏,它接受任意数量的参数并评估它们中的最大值。我有一种奇怪的感觉,这应该是可能的,但我没有看到如何。
答案 0 :(得分:35)
可以编写一个宏来计算它所调用的参数个数。 (我找不到到我第一次看到它的地方的链接。)所以你可以编写MAX_OF_N(),它可以按你的意愿工作,但你仍然需要所有编号的宏直到某个限制:< / p>
#define MAX_OF_1(a) (a)
#define MAX_OF_2(a,b) max(a, b)
#define MAX_OF_3(a,...) MAX_OF_2(a,MAX_OF_2(__VA_ARGS__))
#define MAX_OF_4(a,...) MAX_OF_2(a,MAX_OF_3(__VA_ARGS__))
#define MAX_OF_5(a,...) MAX_OF_2(a,MAX_OF_4(__VA_ARGS__))
...
#define MAX_OF_64(a,...) MAX_OF_2(a,MAX_OF_63(__VA_ARGS__))
// NUM_ARGS(...) evaluates to the literal number of the passed-in arguments.
#define _NUM_ARGS2(X,X64,X63,X62,X61,X60,X59,X58,X57,X56,X55,X54,X53,X52,X51,X50,X49,X48,X47,X46,X45,X44,X43,X42,X41,X40,X39,X38,X37,X36,X35,X34,X33,X32,X31,X30,X29,X28,X27,X26,X25,X24,X23,X22,X21,X20,X19,X18,X17,X16,X15,X14,X13,X12,X11,X10,X9,X8,X7,X6,X5,X4,X3,X2,X1,N,...) N
#define NUM_ARGS(...) _NUM_ARGS2(0, __VA_ARGS__ ,64,63,62,61,60,59,58,57,56,55,54,53,52,51,50,49,48,47,46,45,44,43,42,41,40,39,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0)
#define _MAX_OF_N3(N, ...) MAX_OF_ ## N(__VA_ARGS__)
#define _MAX_OF_N2(N, ...) _MAX_OF_N3(N, __VA_ARGS__)
#define MAX_OF_N(...) _MAX_OF_N2(NUM_ARGS(__VA_ARGS__), __VA_ARGS__)
现在MAX_OF_N(a,b,c,d,e)
将评估为max(a, max(b, max(c, max(d, e))))
。 (我在gcc 4.2.1上测试过。)
请注意,基本情况(MAX_OF_2
)在扩展中不会多次重复其参数是至关重要的(这就是我在此示例中放置max
的原因)。否则,你将每个级别的扩展长度加倍,所以你可以想象64个参数会发生什么:)
答案 1 :(得分:10)
您可能会考虑这种作弊,因为它不是递归的,并且它不会在预处理器中完成工作。它使用GCC扩展。它只适用于一种类型。但是,它是一个可变的MAX_OF_N宏:
#include <iostream>
#include <algorithm>
#define MAX_OF_N(...) ({\
int ra[] = { __VA_ARGS__ }; \
*std::max_element(&ra[0], &ra[sizeof(ra)/sizeof(int)]); \
})
int main() {
int i = 12;
std::cout << MAX_OF_N(1,3,i,6);
}
哦,是的,并且由于初始化列表中的潜在变量表达式,我不认为相当于此(使用其自己的函数来避免std :: max_element)将在C89中起作用。但我不确定可变参数宏是否也在C89中。
我认为这是“唯一一种”限制的内容。但是它有点毛茸茸:
#include <iostream>
#include <algorithm>
#define MAX_OF_N(x, ...) ({\
typeof(x) ra[] = { (x), __VA_ARGS__ }; \
*std::max_element(&ra[0], &ra[sizeof(ra)/sizeof(ra[0])]); \
})
int main() {
int i = 12;
std::cout << MAX_OF_N(i+1,1,3,6,i);
}
答案 2 :(得分:9)
不,因为预处理器只对文件进行一次“滑动”。没有办法让它以递归方式定义宏。
我见过的唯一代码是 not variadic,但是使用了用户必须传递的默认值:
x = MAX_OF_8 (a, b, -1, -1, -1, -1, -1, -1)
假设所有值均为非负值。
内联函数至少应该为C ++提供相同的功能。正如您所说,最好留给具有类似于printf()
的可变参数的函数。
答案 3 :(得分:6)
我认为,即使你可以递归地扩展宏,你的方法在效率方面会有一点问题......当宏扩展时,如果MAX_OF_[N-1]
更大,那么你有从头开始再次评估它。
这是一个愚蠢而愚蠢的答案,可能没人会喜欢xD
#include "my_macros.h"
...
myprogram: source.c my_macros.h
gcc source.c -o myprogram
my_macros.h: make_macros.py
python make_macros.py > my_macros.h
def split(l):
n = len(l)
return l[:n/2], l[n/2:]
def gen_param_seq(n):
return [chr(i + ord("A")) for i in range(n)]
def make_max(a, b):
if len(a) == 1:
parta = "("+a[0]+")"
else:
parta = make_max(*split(a))
if len(b) == 1:
partb = "("+b[0]+")"
else:
partb = make_max(*split(b))
return "("+parta +">"+partb+"?"+parta+":"+partb+")"
for i in range(2, 9):
p = gen_param_seq(i)
print "#define MAX_"+str(i)+"("+", ".join(p)+") "+make_max(*split(p))
然后你将定义那些漂亮的宏:
#define MAX_2(A, B) ((A)>(B)?(A):(B))
#define MAX_3(A, B, C) ((A)>((B)>(C)?(B):(C))?(A):((B)>(C)?(B):(C)))
#define MAX_4(A, B, C, D) (((A)>(B)?(A):(B))>((C)>(D)?(C):(D))?((A)>(B)?(A):(B)):((C)>(D)?(C):(D)))
#define MAX_5(A, B, C, D, E) (((A)>(B)?(A):(B))>((C)>((D)>(E)?(D):(E))?(C):((D)>(E)?(D):(E)))?((A)>(B)?(A):(B)):((C)>((D)>(E)?(D):(E))?(C):((D)>(E)?(D):(E))))
#define MAX_6(A, B, C, D, E, F) (((A)>((B)>(C)?(B):(C))?(A):((B)>(C)?(B):(C)))>((D)>((E)>(F)?(E):(F))?(D):((E)>(F)?(E):(F)))?((A)>((B)>(C)?(B):(C))?(A):((B)>(C)?(B):(C))):((D)>((E)>(F)?(E):(F))?(D):((E)>(F)?(E):(F))))
#define MAX_7(A, B, C, D, E, F, G) (((A)>((B)>(C)?(B):(C))?(A):((B)>(C)?(B):(C)))>(((D)>(E)?(D):(E))>((F)>(G)?(F):(G))?((D)>(E)?(D):(E)):((F)>(G)?(F):(G)))?((A)>((B)>(C)?(B):(C))?(A):((B)>(C)?(B):(C))):(((D)>(E)?(D):(E))>((F)>(G)?(F):(G))?((D)>(E)?(D):(E)):((F)>(G)?(F):(G))))
#define MAX_8(A, B, C, D, E, F, G, H) ((((A)>(B)?(A):(B))>((C)>(D)?(C):(D))?((A)>(B)?(A):(B)):((C)>(D)?(C):(D)))>(((E)>(F)?(E):(F))>((G)>(H)?(G):(H))?((E)>(F)?(E):(F)):((G)>(H)?(G):(H)))?(((A)>(B)?(A):(B))>((C)>(D)?(C):(D))?((A)>(B)?(A):(B)):((C)>(D)?(C):(D))):(((E)>(F)?(E):(F))>((G)>(H)?(G):(H))?((E)>(F)?(E):(F)):((G)>(H)?(G):(H))))
最好的事情是......它有效^ _ ^
答案 4 :(得分:5)
如果您正在使用C ++走这条路,请查看template metaprogramming。它不漂亮,它可能无法解决您的确切问题,但它会处理递归。
答案 5 :(得分:4)
首先,宏不会反复扩展。虽然,宏可以通过为每个递归级别创建一个宏然后推导递归级别来重新进入。但是,所有这些重复和推断递归都由Boost.Preprocessor库来处理。因此,您可以使用更高阶的折叠宏来计算最大值:
#define MAX_EACH(s, x, y) BOOST_PP_IF(BOOST_PP_GREATER_EQUAL(x, y), x, y)
#define MAX(...) BOOST_PP_SEQ_FOLD_LEFT(MAX_EACH, 0, BOOST_PP_VARIADIC_TO_SEQ(__VA_ARGS__))
MAX(3, 6, 8) //Outputs 8
MAX(4, 5, 9, 2) //Outputs 9
现在,这将理解0-256之间的字面数字。它不适用于C ++变量或表达式,因为C预处理器不理解C ++。它只是纯文本替换。但C ++提供了一个称为“函数”的功能,它可以用于C ++表达式,您可以使用它来计算最大值。
template<class T>
T max(T x, T y)
{
return x > y ? x : y;
}
template<class X, class... T>
auto max(X x, T ... args) -> decltype(max(x, max(args...)))
{
return max(x, max(args...));
}
现在,上面的代码确实需要一个C ++ 11编译器。如果您使用的是C ++ 03,则可以创建函数的多个重载以模拟可变参数。此外,我们可以使用预处理器为我们生成这个重复的代码(这就是它的用途)。所以在C ++ 03中,你可以这样写:
template<class T>
T max(T x, T y)
{
return x > y ? x : y;
}
#define MAX_FUNCTION(z, n, data) \
template<class T> \
T max(T x, BOOST_PP_ENUM_PARAMS(n, T x)) \
{ \
return max(x, max(BOOST_PP_ENUM_PARAMS(n, x)));\
}
BOOST_PP_REPEAT_FROM_TO(2, 64, MAX_FUNCTION, ~)
答案 6 :(得分:0)
有一个很好的递归示例 here
“hack”是在预处理器中有一个中间步骤,使其认为在给定步骤中定义不会被其他任何东西替换。