如何在numpy中将布尔数组转换为索引数组

时间:2011-11-21 20:21:52

标签: python arrays numpy

是否有一个有效的Numpy机制来检索数组中基于条件为true的位置的整数索引,而不是布尔掩码数组?

例如:

x=np.array([range(100,1,-1)])
#generate a mask to find all values that are a power of 2
mask=x&(x-1)==0
#This will tell me those values
print x[mask]

在这种情况下,我想知道i mask的索引mask[i]==True。是否可以在没有循环的情况下生成这些?

4 个答案:

答案 0 :(得分:63)

另一种选择:

In [13]: numpy.where(mask)
Out[13]: (array([36, 68, 84, 92, 96, 98]),)

numpy.where(mask==True)相同。

答案 1 :(得分:26)

您应该可以使用numpy.nonzero()来查找此信息。

答案 2 :(得分:2)

np.arange(100,1,-1)
array([100,  99,  98,  97,  96,  95,  94,  93,  92,  91,  90,  89,  88,
        87,  86,  85,  84,  83,  82,  81,  80,  79,  78,  77,  76,  75,
        74,  73,  72,  71,  70,  69,  68,  67,  66,  65,  64,  63,  62,
        61,  60,  59,  58,  57,  56,  55,  54,  53,  52,  51,  50,  49,
        48,  47,  46,  45,  44,  43,  42,  41,  40,  39,  38,  37,  36,
        35,  34,  33,  32,  31,  30,  29,  28,  27,  26,  25,  24,  23,
        22,  21,  20,  19,  18,  17,  16,  15,  14,  13,  12,  11,  10,
         9,   8,   7,   6,   5,   4,   3,   2])

x=np.arange(100,1,-1)

np.where(x&(x-1) == 0)
(array([36, 68, 84, 92, 96, 98]),)

现在改为:

x[x&(x-1) == 0]

答案 3 :(得分:2)

如果您更喜欢索引器方式,可以将布尔列表转换为numpy数组:

print x[nd.array(mask)]