我在尝试编写这些函数时遇到了困难。他们工作不正常,不知道我做错了什么。至于Transitive,我甚至无法开始,并希望你能给予任何帮助,以及我在功能上做错了什么。谢谢。
样本输入:
0 1 2 3 //elements (A)
0 0 //relations (B)
1 1
2 2
3 3
x y z //elements (A)
x y //relations (B)
y z
y y
z z
x y z //elements (A)
x x //relations (B)
y z
x y
z y
x z
y y
z x
y x
z z
1 2 3 4 5 6 7 8 //elements (A)
1 4 //relations (B)
1 7
2 5
2 8
3 6
4 7
5 8
6 6
1 1
2 2
代码:
bool reflexive(int a[], int sizeOfA, int b[], int sizeOfB)
{
bool hold = true;
for(int i=0; i+1<sizeOfB; i+=2)
{
int e = b[i];
int e1 = b[i];
if(pair_is_in_relation(e1, e, b, sizeOfB) == false)
{
if (hold)
{
return false;
break;
}
}
}
if (hold)
cout << "Reflexive - Yes" << endl;
else
cout << "Reflexive - No" << endl;
return hold;
}
bool symmetric(int a[], int sizeOfA, int b[], int sizeOfB)
{
bool hold = true; // set hold to true
for(int i=0; i+1<sizeOfB; i+=2) // for each pair (e,f) in b
{
int e = b[i];
int f = b[i+1];
if(is_in_relation(f, e, b, sizeOfB)) // if pair(e,f) is not in b
{
if(hold) // set hold to false
{
return false;
break;
}
}
}
if(hold) // if hold return true
cout << "Symmetric - Yes" << endl;
else // if hold is false return false
cout << "Symmetric - No" << endl;
}
void antiSymmetric(int b[], int sizeOfB)
{
bool hold = true; // set hold to true
for(int i = 0; i < sizeOfB;) // for each pair (e,f) in b
{
if(hold == false)
{
cout << "AntiSymmetric - No" << endl;
break; //Did not find (e,e) in b
}
for(int j = 0; j < sizeOfB;)
{
if(b[i] == b[j+1] && b[i+1] == b[j]) //If true, then pair(f,e) exists
{
if(b[i+1] != b[i]) //If true, relation is antisymmetric
{
hold = true;
break;
}
else
{
hold = false;
j = j + 2;
}
}
else
{
hold = false;
j = j + 2;
}
}
i = i + 2;
}
if(hold == true)
cout << "AntiSymmetric - Yes" << endl;
}
void transitive(int a[], int sizeOfA, int b[], int sizeOfB)
{
}
int main()
{
char keepGoing = 'y';
while (keepGoing=='y') {
int set1[4] = {0, 1, 2, 3};
int rel1[8] = {0, 0, 1, 1, 2, 2, 3, 3};
cout << "Set 1: " << endl;
reflexive(set1, 3, rel1, 4);
symmetric(set1, 3, rel1, 4);
antiSymmetric(set1, 3, rel1, 4);
cout << endl;
char set2[4] = {'x', 'y', 'z'};
char rel2[8] = {'x', 'y', 'y', 'z', 'y', 'y', 'z', 'z'};
cout << "Set 2: " << endl;
charReflexive(set2, 4, rel2, 8);
charSymmetric(set2, 4, rel2, 8);
charAntiSymmetric(set2, 4, rel2, 8);
cout << endl;
char set3[3] = {'x', 'y', 'z'};
char rel3[18] = {'x', 'x', 'y', 'z', 'x', 'y', 'z', 'y', 'x',
'z', 'y', 'y', 'z', 'x', 'y', 'x', 'z', 'z'};
cout << "Set 3: " << endl;
charReflexive(set3, 3, rel3, 18);
charSymmetric(set3, 3, rel3, 18);
charAntiSymmetric(set3, 3, rel3, 18);
cout << endl;
int set4[8] = {1, 2, 3, 4, 5, 6, 7, 8};
int rel4[20] = {1, 7, 2, 5, 2, 8, 3, 6, 4, 7, 5, 8, 6, 6, 1, 1,
2, 2};
cout << "Set 4: " << endl;
reflexive(set4, 8, rel4, 20);
symmetric(set4, 8, rel4, 20);
antiSymmetric(set4, 8, rel4, 20);
cout << endl << "Would you like to test it again? (y/n): ";
cin >> keepGoing;
}
return 0;
}
答案 0 :(得分:2)
对于初学者来说,这个for
循环的内容是什么,你永远不会增加被迭代的变量?
for(j = 0; j < sizeOfB;)
{
...
}
如果你在第一次迭代中突破它,为什么会有这样一个过于复杂的for
无限循环呢?
如果您需要迭代两个集合的交叉产品,可以使用以下代码段作为开头:
for( int i = 0; i < sizeOfA; ++i )
{
for( int j = 0; j < sizeOfB; ++j )
{
int elemA = a[i];
int elemB = b[j];
... do your magic ...
}
}
答案 1 :(得分:2)
我只看了reflexive
,但你需要重新考虑一下。通常,如果A
中的第一个元素不等于B
中的第一个元素,则会打印"Reflexive - No"
并停止。我不认为你一直都这么认为。
[编辑]好吧,既然我们已经确定int a[]
拥有什么,以及int b[]
拥有什么,我必须重新开始。以前每个人都完全错了。 (尤其是,我的旧“反身”非常对称,并且错误地解释输入。)如果您已经了解了C ++类/容器,我强烈建议您更换int a[]
和int b[]
类似的东西:
template <class T>
struct relation {
typedef std::pair<T,T> single_relation;
std::set<T> elements;
std::set<single_relation> all_relations;
};
或类似的东西,但那只是我。
reflexive:
set holds to true
for each element e in a
if pair(e,e) is not in b
set holds to false
break
symmetric:
set holds to true
for each pair(e,f) in b
if pair(f,e) is not in b
set holds to false
break
antisymetric:
set holds to true
for each pair(e,f) in b
if pair(f,e) is in b
if f is not e
set holds to false
break
transitive:
set holds to true
for each pair(e,f) in b
for each pair(f,g) in b
if pair(e,g) is not in b
set holds to false
break
if holds is false
break
请注意,只有反身实际上需要a[]
演示:
bool pair_is_in_relation(int left, int right, int b[], int sizeOfB)
{
for(int i=0; i+1<sizeOfB; i+=2) {
if (b[i]==left && b[i+1]==right)
return true;
}
return false;
}
bool antiSymmetric(int b[], int sizeOfB)
{
bool holds = true;
for(int i=0; i+1<sizeOfB; i+=2) {
int e = b[i];
int f = b[i+1];
if(pair_is_in_relation(f, e, b, sizeOfB)) {
if (e != f) {
holds = false;
break;
}
}
}
if (holds)
std::cout << "AntiSymmetric - Yes" << endl;
else
std::cout << "AntiSymmetric - No" << endl;
return holds;
}
答案 2 :(得分:1)
首先,你需要直截了当地说明术语:集合S不是自反,对称,传递或任何类型的东西。这就是为什么你很难想象传递(......)应该做什么。
特定集合S上只有特定的二元关系B可以是自反,对称和传递的。
现在,让我们从集合和关系的角度来考虑这一点。假设你有一个函数,方便地称为关系:
bool relation(int a, int b)
{
/* some code here that implements whatever 'relation' models. We will
* pick some relation we know to be reflective, transitive and symmetric.
* For example:
*/
return (a == b);
}
让我们添加一个糟糕的关系,只是为了好玩。你可以用它来测试:
bool relation_bad(int a, int b)
{
/* some code here that implements whatever 'relation' models. This is
* a relation that isn't symmetric, but it is reflexive and transitive.
*/
return (a >= b);
}
现在,您想要编写'反身'代码。反身性意味着项目与自身相关:
bool reflexive(int *s, int items)
{
for(int i = 0; i != items; i++)
{
if(!relation(s[i], s[i]))
return false;
}
return true;
}
现在,'对称'。对称性意味着如果a与be相关,则b必须与a:
相关bool symmetric(int *s, int items)
{
for(int i = 0; i != items; i++)
{ // for every item in the set:
for(int j = 0; j != items; j++)
{ // check against every other items (including itself!)
if(relation(s[i], s[j]) != relation(s[j], s[i])
return false;
}
}
return true;
}
我不会为你编码传递,但传递意味着如果a与b相关,而b与c相关,则a必须与c相关。
你可以看到这里需要三个循环和更复杂的检查。
答案 3 :(得分:0)
\\to find symetric relation
#include<iostream.h>
using namespace std;
main() {
int a[5],b[5],c,d=0,e,f;
cout<<"Enter 1st elemtnts: ";
for(int i=0;i<5;i++){
cin>>a[i];
}
cout<<"Enter second elemnt :";
for(int j=0;j<5;j++){
cin>>b[j];
}
for(c=0;c<5;c++){
for(d=0;d<5;d++){
if(a[c]==b[d]){
cout<<"("<<a[c]<<",";
cout<<b[d]<<")";
}
}
}
cout<<" Are the symetric \n\n";
system("pause");
}