我正在尝试使用numpy.lib.stride_tricks.as_strided来迭代数组的非重叠块,但是我无法找到参数的文档,所以我只能得到重叠的块
例如,我有一个4x5阵列,我希望得到4个2x2块。我很好,右边和底边的额外细胞被排除在外。
到目前为止,我的代码是:
import sys
import numpy as np
a = np.array([
[1,2,3,4,5],
[6,7,8,9,10],
[11,12,13,14,15],
[16,17,18,19,20],
])
sz = a.itemsize
h,w = a.shape
bh,bw = 2,2
shape = (h/bh, w/bw, bh, bw)
strides = (w*sz, sz, w*sz, sz)
blocks = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
print blocks[0][0]
assert blocks[0][0].tolist() == [[1, 2], [6,7]]
print blocks[0][1]
assert blocks[0][1].tolist() == [[3,4], [8,9]]
print blocks[1][0]
assert blocks[1][0].tolist() == [[11, 12], [16, 17]]
生成的块数组的形状似乎是正确的,但最后两个断言失败,可能是因为我的形状或步幅参数不正确。我应该设置哪些值来获得非重叠的块?
答案 0 :(得分:13)
import numpy as np
n=4
m=5
a = np.arange(1,n*m+1).reshape(n,m)
print(a)
# [[ 1 2 3 4 5]
# [ 6 7 8 9 10]
# [11 12 13 14 15]
# [16 17 18 19 20]]
sz = a.itemsize
h,w = a.shape
bh,bw = 2,2
shape = (h/bh, w/bw, bh, bw)
print(shape)
# (2, 2, 2, 2)
strides = sz*np.array([w*bh,bw,w,1])
print(strides)
# [40 8 20 4]
blocks=np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
print(blocks)
# [[[[ 1 2]
# [ 6 7]]
# [[ 3 4]
# [ 8 9]]]
# [[[11 12]
# [16 17]]
# [[13 14]
# [18 19]]]]
从1
a
开始(即blocks[0,0,0,0]
),到达2
(即blocks[0,0,0,1]
)是一个项目。由于(在我的机器上)a.itemsize
是4个字节,所以步幅是1 * 4 = 4.这给了我们strides = (10,2,5,1)*a.itemsize = (40,8,20,4)
中的最后一个值。
再次从1
开始,到达6
(即blocks[0,0,1,0]
),距离是5(即w
)项,所以步幅为5 * 4 = 20.这说明strides
中的倒数第二个值。
再次从1
开始,到达3
(即blocks[0,1,0,0]
),距离是2(即bw
)项,所以步幅为2 * 4 = 8.这表示strides
中的第二个值。
最后,从1
开始,到达11
(即blocks[1,0,0,0]
),距离是10(即w*bh
)项,所以步幅为10 * 4 = 40.所以strides = (40,8,20,4)
。
答案 1 :(得分:5)
以@ unutbu的答案为例,我编写了一个函数来实现任何ND数组的拼贴技巧。请参阅下面的链接到源。
>>> a = numpy.arange(1,21).reshape(4,5)
>>> print a
[[ 1 2 3 4 5]
[ 6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]]
>>> blocks = blockwise_view(a, blockshape=(2,2), require_aligned_blocks=False)
>>> print blocks
[[[[ 1 2]
[ 6 7]]
[[ 3 4]
[ 8 9]]]
[[[11 12]
[16 17]]
[[13 14]
[18 19]]]]
答案 2 :(得分:1)
scikit-image有一个名为view_as_blocks()
的函数,可以几乎你需要的东西。唯一的问题是它有一个额外的assert
禁止你的用例,因为你的块不会均匀地分成你的数组形状。但在您的情况下,assert
不是必需的,因此您可以复制function source code并安全地删除自相矛盾的断言。