我想在Hadoop中按列计算均值和标准差。
我简单地采用单通Naïve算法来MapReduce。 我在多变量数据集455000x90和650000x120上测试了它,并且加速度更低,更低,然后是处理器数量。对于具有2个活动核心的独立模式和伪分布式模式,我获得了455000x90的加速速度0,4 = 20秒/ 53秒。
为什么我的程序无效?是否有可能改善它?
映射器:
public class CalculateMeanAndSTDEVMapper extends
Mapper <LongWritable,
DoubleArrayWritable,
IntWritable,
DoubleArrayWritable> {
private int dataDimFrom;
private int dataDimTo;
private long samplesCount;
private int universeSize;
@Override
protected void setup(Context context) throws IOException {
Configuration conf = context.getConfiguration();
dataDimFrom = conf.getInt("dataDimFrom", 0);
dataDimTo = conf.getInt("dataDimTo", 0);
samplesCount = conf.getLong("samplesCount", 0);
universeSize = dataDimTo - dataDimFrom + 1;
}
@Override
public void map(
LongWritable key,
DoubleArrayWritable array,
Context context) throws IOException, InterruptedException {
DoubleWritable[] outArray = new DoubleWritable[universeSize*2];
for (int c = 0; c < universeSize; c++) {
outArray[c] = new DoubleWritable(
array.get(c+dataDimFrom).get() / samplesCount);
}
for (int c = universeSize; c < universeSize*2; c++) {
double val = array.get(c-universeSize+dataDimFrom).get();
outArray[c] = new DoubleWritable((val*val) / samplesCount);
}
context.write(new IntWritable(1), new DoubleArrayWritable(outArray));
}
}
合
public class CalculateMeanAndSTDEVCombiner extends
Reducer <IntWritable,
DoubleArrayWritable,
IntWritable,
DoubleArrayWritable> {
private int dataDimFrom;
private int dataDimTo;
private int universeSize;
@Override
protected void setup(Context context) throws IOException {
Configuration conf = context.getConfiguration();
dataDimFrom = conf.getInt("dataDimFrom", 0);
dataDimTo = conf.getInt("dataDimTo", 0);
universeSize = dataDimTo - dataDimFrom + 1;
}
@Override
public void reduce(
IntWritable column,
Iterable<DoubleArrayWritable> partialSums,
Context context) throws IOException, InterruptedException {
DoubleWritable[] outArray = new DoubleWritable[universeSize*2];
boolean isFirst = true;
for (DoubleArrayWritable partialSum : partialSums) {
for (int i = 0; i < universeSize*2; i++) {
if (!isFirst) {
outArray[i].set(outArray[i].get()
+ partialSum.get(i).get());
} else {
outArray[i]
= new DoubleWritable(partialSum.get(i).get());
}
}
isFirst = false;
}
context.write(column, new DoubleArrayWritable(outArray));
}
}
减速机:
public class CalculateMeanAndSTDEVReducer extends
Reducer <IntWritable,
DoubleArrayWritable,
IntWritable,
DoubleArrayWritable> {
private int dataDimFrom;
private int dataDimTo;
private int universeSize;
@Override
protected void setup(Context context) throws IOException {
Configuration conf = context.getConfiguration();
dataDimFrom = conf.getInt("dataDimFrom", 0);
dataDimTo = conf.getInt("dataDimTo", 0);
universeSize = dataDimTo - dataDimFrom + 1;
}
@Override
public void reduce(
IntWritable column,
Iterable<DoubleArrayWritable> partialSums,
Context context) throws IOException, InterruptedException {
DoubleWritable[] outArray = new DoubleWritable[universeSize*2];
boolean isFirst = true;
for (DoubleArrayWritable partialSum : partialSums) {
for (int i = 0; i < universeSize; i++) {
if (!isFirst) {
outArray[i].set(outArray[i].get() + partialSum.get(i).get());
} else {
outArray[i] = new DoubleWritable(partialSum.get(i).get());
}
}
isFirst = false;
}
for (int i = universeSize; i < universeSize * 2; i++) {
double mean = outArray[i-universeSize].get();
outArray[i].set(Math.sqrt(outArray[i].get() - mean*mean));
}
context.write(column, new DoubleArrayWritable(outArray));
}
}
DoubleArrayWritable是扩展ArrayWritable的简单类:
public class DoubleArrayWritable extends ArrayWritable {
public DoubleArrayWritable() {
super(DoubleWritable.class);
}
public DoubleArrayWritable(DoubleWritable[] values) {
super(DoubleWritable.class, values);
}
public DoubleWritable get(int idx) {
return (DoubleWritable) get()[idx];
}
}
答案 0 :(得分:0)
我问同一环境中有同样问题的另一份工作的问题。 David Gruzman在差异作业开始时间(本地,群集)中猜到了这个问题。他提出了最佳数据大小,以便在此环境中看到良好的加速(5 GB)。我试过了,这是真的。