.NET上的线程安全阻塞队列实现

时间:2009-04-29 09:05:43

标签: .net multithreading collections queue

我正在寻找.NET的线程安全阻塞队列的实现。 通过“线程安全阻塞队列”我的意思是: - 对队列的线程安全访问,其中Dequeue方法调用阻塞一个线程,直到其他线程放入(Enqueue)某个值。

此刻我发现了这个: http://www.eggheadcafe.com/articles/20060414.asp (但它适用于.NET 1.1)。

有人可以评论/批评此实施的正确性。 或建议另一个。 提前谢谢。

7 个答案:

答案 0 :(得分:20)

作为参考,.NET 4引入了System.Collections.Concurrent.BlockingCollection<T>类型来解决这个问题。对于非阻塞队列,您可以使用System.Collections.Concurrent.ConcurrentQueue<T>。请注意,ConcurrentQueue<T>可能会用作BlockingCollection<T>的基础数据存储区,用于OP的使用。

答案 1 :(得分:9)

这个Creating a blocking Queue in .NET怎么样?

如果您需要.NET 1.1(我不确定该问题),只需删除泛型并将T替换为object

答案 2 :(得分:1)

Queue.Synchronized http://msdn.microsoft.com/en-us/library/system.collections.queue.synchronized(VS.71).aspx

无论如何都是一个起点,我从未使用过Blocking Queue。对不起那么相关的帖子感到抱歉。

答案 3 :(得分:1)

Microsoft示例很好,但它没有封装到类中。此外,它要求消费者线程在MTA中运行(因为WaitAny调用)。在某些情况下,您可能需要在STA中运行(例如,如果您正在进行COM互操作)。在这些情况下,无法使用WaitAny。

我有一个简单的阻塞队列类,可以解决这个问题: http://element533.blogspot.com/2010/01/stoppable-blocking-queue-for-net.html

答案 4 :(得分:1)

是的,.NET4包含并发集合。 BTW,非常非常好的关于pfx团队的并行扩展的手册 - http://www.microsoft.com/downloads/details.aspx?FamilyID=86b3d32b-ad26-4bb8-a3ae-c1637026c3ee&displaylang=en

pfx也可用作.net 3.5,作为Reactive Extensions的一部分。

答案 5 :(得分:0)

微软有一个很好的例子:

//Copyright (C) Microsoft Corporation.  All rights reserved.

using System;
using System.Threading;
using System.Collections;
using System.Collections.Generic;

// The thread synchronization events are encapsulated in this 
// class to allow them to easily be passed to the Consumer and 
// Producer classes. 
public class SyncEvents
{
    public SyncEvents()
    {
        // AutoResetEvent is used for the "new item" event because
        // we want this event to reset automatically each time the
        // consumer thread responds to this event.
        _newItemEvent = new AutoResetEvent(false);

        // ManualResetEvent is used for the "exit" event because
        // we want multiple threads to respond when this event is
        // signaled. If we used AutoResetEvent instead, the event
        // object would revert to a non-signaled state with after 
        // a single thread responded, and the other thread would 
        // fail to terminate.
        _exitThreadEvent = new ManualResetEvent(false);

        // The two events are placed in a WaitHandle array as well so
        // that the consumer thread can block on both events using
        // the WaitAny method.
        _eventArray = new WaitHandle[2];
        _eventArray[0] = _newItemEvent;
        _eventArray[1] = _exitThreadEvent;
    }

    // Public properties allow safe access to the events.
    public EventWaitHandle ExitThreadEvent
    {
        get { return _exitThreadEvent; }
    }
    public EventWaitHandle NewItemEvent
    {
        get { return _newItemEvent; }
    }
    public WaitHandle[] EventArray
    {
        get { return _eventArray; }
    }

    private EventWaitHandle _newItemEvent;
    private EventWaitHandle _exitThreadEvent;
    private WaitHandle[] _eventArray;
}

// The Producer class asynchronously (using a worker thread)
// adds items to the queue until there are 20 items.
public class Producer 
{
    public Producer(Queue<int> q, SyncEvents e)
    {
        _queue = q;
        _syncEvents = e;
    }
    public void ThreadRun()
    {
        int count = 0;
        Random r = new Random();
        while (!_syncEvents.ExitThreadEvent.WaitOne(0, false))
        {
            lock (((ICollection)_queue).SyncRoot)
            {
                while (_queue.Count < 20)
                {
                    _queue.Enqueue(r.Next(0, 100));
                    _syncEvents.NewItemEvent.Set();
                    count++;
                }
            }
        }
        Console.WriteLine("Producer thread: produced {0} items", count);
    }
    private Queue<int> _queue;
    private SyncEvents _syncEvents;
}

// The Consumer class uses its own worker thread to consume items
// in the queue. The Producer class notifies the Consumer class
// of new items with the NewItemEvent.
public class Consumer
{
    public Consumer(Queue<int> q, SyncEvents e)
    {
        _queue = q;
        _syncEvents = e;
    }
    public void ThreadRun()
    {
        int count = 0;
        while (WaitHandle.WaitAny(_syncEvents.EventArray) != 1)
        {
            lock (((ICollection)_queue).SyncRoot)
            {
                int item = _queue.Dequeue();
            }
            count++;
        }
        Console.WriteLine("Consumer Thread: consumed {0} items", count);
    }
    private Queue<int> _queue;
    private SyncEvents _syncEvents;
}

public class ThreadSyncSample
{
    private static void ShowQueueContents(Queue<int> q)
    {
        // Enumerating a collection is inherently not thread-safe,
        // so it is imperative that the collection be locked throughout
        // the enumeration to prevent the consumer and producer threads
        // from modifying the contents. (This method is called by the
        // primary thread only.)
        lock (((ICollection)q).SyncRoot)
        {
            foreach (int i in q)
            {
                Console.Write("{0} ", i);
            }
        }
        Console.WriteLine();
    }

    static void Main()
    {
        // Configure struct containing event information required
        // for thread synchronization. 
        SyncEvents syncEvents = new SyncEvents();

        // Generic Queue collection is used to store items to be 
        // produced and consumed. In this case 'int' is used.
        Queue<int> queue = new Queue<int>();

        // Create objects, one to produce items, and one to 
        // consume. The queue and the thread synchronization
        // events are passed to both objects.
        Console.WriteLine("Configuring worker threads...");
        Producer producer = new Producer(queue, syncEvents);
        Consumer consumer = new Consumer(queue, syncEvents);

        // Create the thread objects for producer and consumer
        // objects. This step does not create or launch the
        // actual threads.
        Thread producerThread = new Thread(producer.ThreadRun);
        Thread consumerThread = new Thread(consumer.ThreadRun);

        // Create and launch both threads.     
        Console.WriteLine("Launching producer and consumer threads...");        
        producerThread.Start();
        consumerThread.Start();

        // Let producer and consumer threads run for 10 seconds.
        // Use the primary thread (the thread executing this method)
        // to display the queue contents every 2.5 seconds.
        for (int i = 0; i < 4; i++)
        {
            Thread.Sleep(2500);
            ShowQueueContents(queue);
        }

        // Signal both consumer and producer thread to terminate.
        // Both threads will respond because ExitThreadEvent is a 
        // manual-reset event--so it stays 'set' unless explicitly reset.
        Console.WriteLine("Signaling threads to terminate...");
        syncEvents.ExitThreadEvent.Set();

        // Use Join to block primary thread, first until the producer thread
        // terminates, then until the consumer thread terminates.
        Console.WriteLine("main thread waiting for threads to finish...");
        producerThread.Join();
        consumerThread.Join();
    }
}

答案 6 :(得分:0)

请注意,如果您完全控制它,锁定调用代码可能是更好的选择。考虑在循环中访问您的队列:您将不必要地多次获取锁,这可能会导致性能下降。