这是测试的正常输出:
attach(airquality)
pw <- pairwise.wilcox.test(Ozone, Month, p.adj = "bonf")
pw
data: Ozone and Month
May Jun Jul Aug
Jun 1.0000 - - -
Jul 0.0003 0.1414 - -
Aug 0.0012 0.2591 1.0000 -
Sep 1.0000 1.0000 0.0074 0.0325
我最近不得不用10个级别的因子进行测试。虽然pairwise.wilcox.test的下三角形格式是有用和简洁的,但我认为以类似的方式将它安排到Tukey HSD输出中是很方便的,其中列出每个成对组合以及它的相关p值。这是我尝试这样做的:
pw.df <- as.data.frame(pw$p.value)
pw.diff <- vector("character")
pw.pval <- vector("numeric")
for (i in 1:ncol(pw.df) )
for (j in i:length(pw.df) ) {
pw.diff <- c(pw.diff,paste(colnames(pw.df[i]),"-",rownames(pw.df)[j]))
pw.pval <- c(pw.pval,pw.df[j,i])
}
# order them by ascending p value
v <- order(pw.pval,decreasing = F)
pw.df <- data.frame(pw.diff[v],pw.pval[v])
# display those that are significant at the 5% level
pw.df[pw.df$pw.pval<0.05,]
pw.diff.v. pw.pval.v.
1 May - Jul 0.000299639
2 May - Aug 0.001208078
3 Jul - Sep 0.007442604
4 Aug - Sep 0.032479550
如果有人有关于如何使这更容易和/或更优雅的一些提示/技巧/建议,我将不胜感激。
答案 0 :(得分:9)
我会使用reshape
或reshape2
包来完成此任务,特别是melt()
命令。 pairwise.wilcox.test返回的对象包含第三个插槽中感兴趣的数据,因此像melt(pw[[3]])
这样的东西应该可以解决问题:
X1 X2 value
1 Jun May 1.000000000
2 Jul May 0.000299639
3 Aug May 0.001208078
4 Sep May 1.000000000
5 Jun Jun NA
....