我正在阅读Cohen,Cohen,Aiken和West(2003)“行为科学的应用多元回归相关分析”一书,并且遇到了回归表面的三维图,显示了相互作用而没有相互作用(第259页) )。图形看起来可能是使用R创建的。我喜欢图形作为教学工具,并希望重现它们。情节看起来像这样:
Coehn等人的唯一补充。曲线是平均线上的线,+ 1sd,= 1sd,x2。如果可能的话,这将是一个很好的补充(通常R大多数事情是可能的)
我在下面提供了一个样本数据集,其中包含IV,2个预测变量和中心预测变量。我如何使用R生成回归曲面(平面)图,显示相互作用和中心数据与未中心数据的加法模型(我假设技术相同,但要确保)。
总共4个地块: 1.没有交互 2.不间断的互动 3.无中心互动 4.中心互动
DF<-structure(list(y = c(-1.22, -1.73, -2.64, -2.44, -1.11, 2.24,
3.42, 0.67, 0.59, -0.61, -10.77, 0.93, -8.6, -6.99, -0.12, -2.29,
-5.16, -3.35, -3.35, -2.51, 2.21, -1.18, -5.21, -7.74, -1.34),
x1 = c(39.5, 41, 34, 30.5, 31.5, 30, 41.5, 24, 43, 39, 25.5,
38.5, 33.5, 30, 41, 31, 25, 37, 37.5, 24.5, 38, 37, 41, 37,
36), x2 = c(61L, 53L, 53L, 44L, 49L, 44L, 57L, 47L, 54L,
48L, 46L, 59L, 46L, 61L, 55L, 57L, 59L, 59L, 55L, 50L, 62L,
55L, 55L, 52L, 55L), centered.x1 = c(5.49702380952381, 6.99702380952381,
-0.0029761904761898, -3.50297619047619, -2.50297619047619,
-4.00297619047619, 7.49702380952381, -10.0029761904762, 8.99702380952381,
4.99702380952381, -8.50297619047619, 4.49702380952381, -0.50297619047619,
-4.00297619047619, 6.99702380952381, -3.00297619047619, -9.00297619047619,
2.99702380952381, 3.49702380952381, -9.50297619047619, 3.99702380952381,
2.99702380952381, 6.99702380952381, 2.99702380952381, 1.99702380952381
), centered.x2 = c(9.80357142857143, 1.80357142857143, 1.80357142857143,
-7.19642857142857, -2.19642857142857, -7.19642857142857,
5.80357142857143, -4.19642857142857, 2.80357142857143, -3.19642857142857,
-5.19642857142857, 7.80357142857143, -5.19642857142857, 9.80357142857143,
3.80357142857143, 5.80357142857143, 7.80357142857143, 7.80357142857143,
3.80357142857143, -1.19642857142857, 10.8035714285714, 3.80357142857143,
3.80357142857143, 0.803571428571431, 3.80357142857143)), .Names = c("y",
"x1", "x2", "centered.x1", "centered.x2"), row.names = c(NA,
25L), class = "data.frame")
提前谢谢。
编辑:下面的代码绘制了飞机,但是当你进行交互时这不适用(这是我真正感兴趣的)。另外,我不知道如何绘制高(+ 1sd),低(-1sd)和x2的平均值。
x11(10,5)
s3d <- scatterplot3d(DF[,c(2,3,1)], type="n", highlight.3d=TRUE,
angle=70, scale.y=1, pch=16, main="scatterplot3d")
# Now adding a regression plane to the "scatterplot3d"
my.lm <- with(DF, lm(y ~ x1 + x2))
s3d$plane3d(my.lm, lty.box = "solid")
尝试绘制交互平面(见此处):
s3d <- scatterplot3d(DF[,c(2,3,1)], type="n", highlight.3d=TRUE,
angle=70, scale.y=1, pch=16, main="scatterplot3d")
my.lm <- with(DF, lm(y ~ x1 + x2 + x1:x2 ))
s3d$plane3d(my.lm, lty.box = "solid")
产生以下错误:
Error in segments(x, z1, x + y.max * yx.f, z2 + yz.f * y.max, lty = ltya, :
cannot mix zero-length and non-zero-length coordinates
答案 0 :(得分:14)
以下是我将如何使用包'rms'和'lattice'来实现它(添加一些颜色):
require(rms) # also need to have Hmisc installed
require(lattice)
ddI <- datadist(DF)
options(datadist="ddI")
lininterp <- ols(y ~ x1*x2, data=DF)
bplot(Predict(lininterp, x1=25:40, x2=45:60),
lfun=wireframe, # bplot passes extra arguments to wireframe
screen = list(z = -10, x = -50), drape=TRUE)
非交互模型:
bplot(Predict(lin.no.int, x1=25:40, x2=45:60), lfun=wireframe, col=2:8, drape=TRUE,
screen = list(z = -10, x = -50),
main="Estimated regression surface with no interaction")