我是Octave的初级用户,想要计算一个数字的所有整数除数,例如,对于数字120,我想得到1,2,3,4,5,6,8,10 ,12,15,20,24,30,40,60和120。
我知道八度音程具有factor
功能,但这只给出了素数分解。我想要所有整数除数。
答案 0 :(得分:1)
我不认为这是一个内置功能,所以你需要写一个。由于每个因子都是素因子集的乘积,因此您可以使用一些内置函数来构建所需的结果。
function rslt = allfactors(N)
%# Return all the integer divisors of the input N
%# If N = 0, return 0
%# If N < 0, return the integer devisors of -N
if N == 0
rslt = N;
return
end
if N < 0
N = -N;
end
x = factor(N)'; %# get all the prime factors, turn them into a column vector '
rslt = []; %# create an empty vector to hold the result
for k = 2:(length(x)-1)
rslt = [rslt ; unique(prod(nchoosek(x,k),2))];
%# nchoosek(x,k) returns each combination of k prime factors
%# prod(..., 2) calculates the product of each row
%# unique(...) pulls out the unique members
%# rslt = [rslt ...] is a convenient shorthand for appending elements to a vector
end
rslt = sort([1 ; unique(x) ; rslt ; N]) %# add in the trivial and prime factors, sort the list
end
答案 1 :(得分:1)
我觉得这是你要找的那个。 希望它可能有用。
function fact(n);
f = factor(n); % prime decomposition
K = dec2bin(0:2^length(f)-1)-'0'; % generate all possible permutations
F = ones(1,2^length(f));
for k = 1:size(K)
F(k) = prod(f(~K(k,:))); % and compute products
end;
F = unique(F); % eliminate duplicates
printf('There are %i factors for %i.\n',length(F),n);
disp(F);
end;'
以下是输出:
>> fact(12)
There are 6 factors for 12.
1 2 3 4 6 12
>> fact(28)
There are 6 factors for 28.
1 2 4 7 14 28
>> fact(64)
There are 7 factors for 64.
1 2 4 8 16 32 64
>>fact(53)
There are 2 factors for 53.
1 53
答案 2 :(得分:0)
只需使用“除数”:
divisors(sym(120))
ans = (sym) [1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120] (1×16 matrix)