使用OpenCV在HoughCircles上进行颜色检测

时间:2011-10-13 01:09:29

标签: opencv colors geometry detection

我已经检测到22个球并且正在努力寻找在这些圆圈上运行颜色检测算法以获得颜色的方法。我正在使用HoughCircles来检测圆圈,但不知道如何检查这些圆圈是什么颜色的? 源代码:

#include <stdio.h>
#include <cv.h>
#include <highgui.h>
#include <math.h>

int main(int argc, char** argv)
{
    //load image from directory
    IplImage* img = cvLoadImage("C:\\Users\\Nathan\\Desktop\\SnookerPic.png");


    IplImage* gray = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1);
    CvMemStorage* storage = cvCreateMemStorage(0);

    //covert to grayscale
    cvCvtColor(img, gray, CV_BGR2GRAY);

    // This is done so as to prevent a lot of false circles from being detected
    cvSmooth(gray, gray, CV_GAUSSIAN, 7, 7);

    IplImage* canny = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
    IplImage* rgbcanny = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,3);
    cvCanny(gray, canny, 50, 100, 3);

    //detect circles
    CvSeq* circles = cvHoughCircles(gray, storage, CV_HOUGH_GRADIENT, 1, 35.0, 75, 60,0,0);
    cvCvtColor(canny, rgbcanny, CV_GRAY2BGR);

    //draw all detected circles
    for (int i = 0; i < circles->total; i++)
    {
         // round the floats to an int
         float* p = (float*)cvGetSeqElem(circles, i);
         cv::Point center(cvRound(p[0]), cvRound(p[1]));
         int radius = cvRound(p[2]);
         cvScalar c = cvGet2D(center.x, center.y);//colour of circle

         // draw the circle center
         cvCircle(img, center, 3, CV_RGB(0,255,0), -1, 8, 0 );

         // draw the circle outline
         cvCircle(img, center, radius+1, CV_RGB(0,0,255), 2, 8, 0 );

         //display coordinates
         printf("x: %d y: %d r: %d\n",center.x,center.y, radius);
    }

    //create window
    cvNamedWindow("circles", 1);
    cvNamedWindow("SnookerImage", 1);
    //show image in window
    cvShowImage("circles", rgbcanny);
    cvShowImage("SnookerImage", img);

    cvSaveImage("out.png", rgbcanny);
    cvWaitKey(0);

    return 0;
}

2 个答案:

答案 0 :(得分:1)

如果球的颜色均匀,您可以检查中心的颜色:

CvMemStorage* storage = cvCreateMemStorage(0);
cvSmooth(image, image, CV_GAUSSIAN, 5, 5 );
CvSeq* results = cvHoughCircles(
image,
storage,
CV_HOUGH_GRADIENT,
2,
image->width/10
);
for( int i = 0; i < results->total; i++ ) 
{
float* p = (float*) cvGetSeqElem( results, i );
CvPoint center = cvPoint( cvRound( p[0] ), cvRound( p[1] ) );
CvScalar c = cvGet2D(image, center.x, center.y); //color of the center
}

没有测试过代码但是应该没问题。

编辑:

哎呀,我忘记了Get2D方法中的一个参数,即从中获取颜色的实际图像。改为正确的形式。

答案 1 :(得分:1)

我们在开源愿景框架中编写了自己的blob检测库: http://www.simplecv.org

执行所需操作的代码非常简单:

img = Image("/path/to/image.png")
blobs = img.findBlobs()
circle_blobs = blobs.filter(blobs.isCircle() == True)
list_of_blobs_colors = circle_blobs.meanColor()