在Matplotlib中绘制多个y轴时,有没有办法指定如何将右轴的原点(和/或某些ytick标签)与左轴的特定值对齐?
这是我的问题:我想绘制两组数据及其差异(基本上,我正在尝试重现this kind of graph)。
我可以重现它,但我必须手动调整右轴的ylim,使原点与我想要的左轴轴对齐。
我在下面举例说明了我使用的代码的简化版本。如您所见,我必须手动调整右轴的比例以对齐右轴的原点以及方形。
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
grp1 = np.array([1.202, 1.477, 1.223, 1.284, 1.701, 1.724, 1.099,
1.242, 1.099, 1.217, 1.291, 1.305, 1.333, 1.246])
grp2 = np.array([1.802, 2.399, 2.559, 2.286, 2.460, 2.511, 2.296,
1.975])
fig = plt.figure(figsize=(6, 6))
ax = fig.add_axes([0.17, 0.13, 0.6, 0.7])
# remove top and right spines and turn ticks off if no spine
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('left')
# postition of tick out
ax.tick_params(axis='both', direction='out', width=3, length=7,
labelsize=24, pad=8)
ax.spines['left'].set_linewidth(3)
# plot groups vs random numbers to create dot plot
ax.plot(np.random.normal(1, 0.05, grp2.size), grp2, 'ok', markersize=10)
ax.plot(np.random.normal(2, 0.05, grp1.size), grp1, 'ok', markersize=10)
ax.errorbar(1, np.mean(grp2), fmt='_r', markersize=50,
markeredgewidth=3)
ax.errorbar(2, np.mean(grp1), fmt='_r', markersize=50,
markeredgewidth=3)
ax.set_xlim((0.5, 3.5))
ax.set_ylim((0, 2.7))
# create right axis
ax2 = fig.add_axes(ax.get_position(), sharex=ax, frameon=False)
ax2.spines['left'].set_color('none')
ax2.spines['top'].set_color('none')
ax2.spines['bottom'].set_color('none')
ax2.xaxis.set_ticks_position('none')
ax2.yaxis.set_ticks_position('right')
# postition of tick out
ax2.tick_params(axis='both', direction='out', width=3, length=7,
labelsize=24, pad=8)
ax2.spines['right'].set_linewidth(3)
ax2.set_xticks([1, 2, 3])
ax2.set_xticklabels(('gr2', 'gr1', 'D'))
ax2.hlines(0, 0.5, 3.5, linestyle='dotted')
#ax2.hlines((np.mean(adult)-np.mean(nrvm)), 0, 3.5, linestyle='dotted')
ax2.plot(3, (np.mean(grp1)-np.mean(grp2)), 'sk', markersize=12)
# manual adjustment so the origin is aligned width left group2
ax2.set_ylim((-2.3, 0.42))
ax2.set_xlim((0.5, 3.5))
plt.show()
答案 0 :(得分:8)
你可以制作一个计算ax2
:
def align_yaxis(ax1, v1, ax2, v2):
"""adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1"""
_, y1 = ax1.transData.transform((0, v1))
_, y2 = ax2.transData.transform((0, v2))
inv = ax2.transData.inverted()
_, dy = inv.transform((0, 0)) - inv.transform((0, y1-y2))
miny, maxy = ax2.get_ylim()
ax2.set_ylim(miny+dy, maxy+dy)
使用align_yaxis()
,您可以快速对齐轴:
#...... your code
# adjustment so the origin is aligned width left group2
ax2.set_ylim((0, 2.7))
align_yaxis(ax, np.mean(grp2), ax2, 0)
plt.show()
答案 1 :(得分:2)
上面的答案是好的,但有时会删除数据,在第二个答案中会更全面地回答,
Matplotlib axis with two scales shared origin
或快速破解
def align_yaxis(ax1, v1, ax2, v2, y2min, y2max):
"""adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1."""
"""where y2max is the maximum value in your secondary plot. I haven't
had a problem with minimum values being cut, so haven't set this. This
approach doesn't necessarily make for axis limits at nice near units,
but does optimist plot space"""
_, y1 = ax1.transData.transform((0, v1))
_, y2 = ax2.transData.transform((0, v2))
inv = ax2.transData.inverted()
_, dy = inv.transform((0, 0)) - inv.transform((0, y1-y2))
miny, maxy = ax2.get_ylim()
scale = 1
while scale*(maxy+dy) < y2max:
scale += 0.05
ax2.set_ylim(scale*(miny+dy), scale*(maxy+dy))