我有一个C ++回调函数,它使用ctypes调用Python。该函数的参数是指向double数组和元素数的指针。
有很多元素,大约2,000,000。我需要将它发送到scipy函数中。
C ++原型是:
bool (*ptsetDataSource)(double*, long long);
以下是python代码:
CPF_setDataSource = CFUNCTYPE(c_bool, POINTER(c_double),c_longlong)
CPF_setSelection= CFUNCTYPE(c_bool,c_char_p, c_longlong,c_longlong)
CPF_ResetSequence = CFUNCTYPE(c_bool)
def setDataSource(Data, DataLength):
Datalist=[0.0]*100
for i in range(0,100):
Datalist[i]=Data[i]
print Datalist
return True
问题是print datalist返回:
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
这是不正确的(在c ++方面检查时,数据填充了很多其他数字。
此外,如果我使用此代码将数据转换为python列表,它会在分配步骤锁定计算机。
无论如何从C ++数组加载数据然后将其转换为适合scipy的数组?
答案 0 :(得分:30)
如果Data
是(c_double*DataLength.value)
数组,那么您可以:
a = np.frombuffer(Data) # no copy. Changes in `a` are reflected in `Data`
如果Data
是POINTER(c_double)
,您可以使用numpy.fromiter()
获取numpy数组。它与您的问题中的循环相同但更快:
a = np.fromiter(Data, dtype=np.float, count=DataLength.value) # copy
要从POINTER(c_double)
实例创建一个numpy数组而不进行复制,可以使用.from_address()
方法:
ArrayType = ctypes.c_double*DataLength.value
addr = ctypes.addressof(Data.contents)
a = np.frombuffer(ArrayType.from_address(addr))
或者
array_pointer = ctypes.cast(Data, ctypes.POINTER(ArrayType))
a = np.frombuffer(array_pointer.contents)
两种方法都会将POINTER(c_double)
实例转换为(c_double*DataLength)
,然后再将其传递给numpy.frombuffer()
。
无论如何从C ++数组加载数据然后将其转换为适合scipy的数组?
这是Python的C扩展模块(用Cython编写),它提供转换函数作为C API:
cimport numpy as np
np.import_array() # initialize C API to call PyArray_SimpleNewFromData
cdef public api tonumpyarray(double* data, long long size) with gil:
if not (data and size >= 0): raise ValueError
cdef np.npy_intp dims = size
#NOTE: it doesn't take ownership of `data`. You must free `data` yourself
return np.PyArray_SimpleNewFromData(1, &dims, np.NPY_DOUBLE, <void*>data)
它可以与ctypes
一起使用,如下所示:
from ctypes import (PYFUNCTYPE, py_object, POINTER, c_double, c_longlong,
pydll, CFUNCTYPE, c_bool, cdll)
import pointer2ndarray
tonumpyarray = PYFUNCTYPE(py_object, POINTER(c_double), c_longlong)(
("tonumpyarray", pydll.LoadLibrary(pointer2ndarray.__file__)))
@CFUNCTYPE(c_bool, POINTER(c_double), c_longlong)
def callback(data, size):
a = tonumpyarray(data, size)
# call scipy functions on the `a` array here
return True
cpplib = cdll.LoadLibrary("call_callback.so") # your C++ lib goes here
cpplib.call_callback(callback)
call_callback
的位置:void call_callback(bool (*)(double *, long long))
。