分支和绑定背包实现的内存扼流圈

时间:2011-09-19 17:38:38

标签: java optimization knapsack-problem

我基于pseudo-Java code from here编写了分支绑定背包算法的这种实现。不幸的是,在大型问题实例like this上,内存窒息。为什么是这样?如何使这种实现更节省内存?

链接上文件的输入格式如下:

 numberOfItems maxWeight
    profitOfItem1 weightOfItem1
    .
    .
    .
    profitOfItemN weightOfItemN



// http://books.google.com/books?id=DAorddWEgl0C&pg=PA233&source=gbs_toc_r&cad=4#v=onepage&q&f=true

import java.util.Comparator;
import java.util.LinkedList;
import java.util.PriorityQueue;

class ItemComparator implements Comparator {

public int compare (Object item1, Object item2){

    Item i1 = (Item)item1;
    Item i2 = (Item)item2;

    if ((i1.valueWeightQuotient)<(i2.valueWeightQuotient))
           return 1;
    if ((i2.valueWeightQuotient)<(i1.valueWeightQuotient))
           return -1;
    else { // costWeightQuotients are equal

        if ((i1.weight)<(i2.weight)){

            return 1;

        }

        if ((i2.weight)<(i1.weight)){

            return -1;

        }

    }


        return 0;

}

}

class Node
{
    int level;
    int profit;
    int weight;
        double bound;


}

class NodeComparator implements Comparator {


    public int compare(Object o1, Object o2){

        Node n1 = (Node)o1;
        Node n2 = (Node)o2;

        if ((n1.bound)<(n2.bound))
               return 1;
        if ((n2.bound)<(n1.bound))
               return -1;

        return 0;
    }


}


class Solution {

    long weight;
    long value;

}

public class BranchAndBound {

static Solution branchAndBound2(LinkedList<Item> items, double W) {

    double timeStart = System.currentTimeMillis();

    int n = items.size();

    int [] p = new int [n];
    int [] w = new int [n];

     for (int i=0; i<n;i++){

        p [i]= (int)items.get(i).value;
        w [i]= (int)items.get(i).weight;

    }

    Node u;
    Node v = new Node(); // tree root

    int maxProfit=0;
    int usedWeight=0;

    NodeComparator nc = new NodeComparator();
    PriorityQueue<Node> PQ = new PriorityQueue<Node>(n,nc);

    v.level=-1;
    v.profit=0;
    v.weight=0; // v initialized to -1, dummy root
    v.bound = bound(v,W, n, w, p);
    PQ.add(v);

    while(!PQ.isEmpty()){

       v=PQ.poll();
       u = new Node();
       if(v.bound>maxProfit){ // check if node is still promising

           u.level = v.level+1; // set u to the child that includes the next item

           u.weight = v.weight + w[u.level];
           u.profit = v.profit + p[u.level];


           if (u.weight <=W && u.profit > maxProfit){
               maxProfit = u.profit;
               usedWeight = u.weight;
           }

           u.bound = bound(u, W, n, w, p);

           if(u.bound > maxProfit){
               PQ.add(u);
           }

           u = new Node();
           u.level = v.level+1;
           u.weight = v.weight; // set u to the child that does not include the next item
           u.profit = v.profit;
           u.bound = bound(u, W, n, w, p);

           if(u.bound>maxProfit)
               PQ.add(u);


       }


    }
    Solution solution = new Solution();
    solution.value = maxProfit;
    solution.weight = usedWeight;

    double timeStop = System.currentTimeMillis();
    double elapsedTime = timeStop - timeStart;
    System.out.println("* Time spent in branch and bound (milliseconds):" + elapsedTime);

    return solution;

}



static double bound(Node u, double W, int n, int [] w, int [] p){

    int j=0; int k=0;
    int totWeight=0;
    double result=0;

    if(u.weight>=W)
        return 0;

    else {

        result = u.profit;
        totWeight = u.weight; // por esto no hace

        if(u.level < w.length)
        {
          j= u.level +1;
        }



        int weightSum;

        while ((j < n) && ((weightSum=totWeight + w[j])<=W)){
            totWeight = weightSum; // grab as many items as possible
             result = result + p[j];
            j++;
        }
        k=j; // use k for consistency with formula in text

        if (k<n){
            result = result + ((W - totWeight) * p[k] / w[k]);// grab fraction of excluded kth item
        }
        return result;
    }

}



}

2 个答案:

答案 0 :(得分:0)

我得到了一个稍微快一点的实现,用泛型删除所有Collection实例,而不是使用数组。

答案 1 :(得分:0)

不确定您是否仍然需要深入了解算法或者您的调整是否已经解决了您的问题,但是使用广度优先的分支和绑定算法(例如您实施的算法)总是会有可能用于内存使用问题。当然,您希望能够排除足够数量的分支,以保持优先级队列中的节点数量相对较小,但在最坏的情况下,您最终可能会具有尽可能多的节点,因为存储器中保存的背包中可能存在项目选择的排列。当然,最糟糕的情况是不太可能,但对于大型问题实例,即使是普通的树也可能最终填充数百万个节点的优先级队列。

如果你要在你的代码中抛出大量无法预料的大问题实例,并且需要知道无论算法必须考虑多少个分支,你就永远不会耗尽内存,我需要知心。 d考虑深度优先分支和绑定算法,如本书第2.5.1节中概述的Horowitz-Sahni算法:http://www.or.deis.unibo.it/knapsack.html。对于某些问题实例,这种方法在找到最优解决方案之前必须考虑的可能解决方案的数量方面效率较低,但对于某些问题实例,它将更有效 - 它实际上取决于结构树的。