我正在寻找一个库,它将计算一组变量arity运算符下的集合的固定点/闭包。例如,
fixwith [(+)] [1]
对于整数应该计算所有N(自然,1..
)。我试着去写它,但有些东西是缺乏的。它效率不高,我觉得我对多功能的处理并不是最优雅的。此外,是否可以使用内置fix
函数而不是手动递归来编写?
class OperatorN α β | β -> α where
wrap_op :: β -> (Int, [α] -> α)
instance OperatorN α (() -> α) where
wrap_op f = (0, \[] -> f ())
instance OperatorN α (α -> α) where
wrap_op f = (1, \[x] -> f x)
instance OperatorN α ((α, α) -> α) where
wrap_op f = (2, \[x, y] -> f (x, y))
instance OperatorN α ((α, α, α) -> α) where
wrap_op f = (3, \[x, y, z] -> f (x, y, z))
instance OperatorN α ((α, α, α, α) -> α) where
wrap_op f = (4, \[x, y, z, w] -> f (x, y, z, w))
type WrappedOp α = (Int, [α] -> α)
fixwith_next :: Eq α => [WrappedOp α] -> [α] -> [α]
fixwith_next ops s = List.nub (foldl (++) s (map g ops)) where
g (0, f) = [f []]
g (arity, f) = do
x <- s
let fx = \xs -> f (x:xs)
g (arity - 1, fx)
fixwith ops s
| next <- fixwith_next ops s
, next /= s
= fixwith ops next
fixwith _ s = s
实例中,
> fixwith [wrap_op $ uncurry (*)] [-1 :: Int]
[-1,1]
> fixwith [wrap_op $ uncurry (*)] [1 :: Int]
[1]
> fixwith [wrap_op $ max 3, wrap_op $ \() -> 0] [1 :: Int]
[1,3,0]
这并没有提高性能,但我想我只需要弄清楚如何减少计算量,使其实际上更快。
import qualified Control.RMonad as RMonad
class OperatorN α β | β -> α where
wrap_op :: β -> (Int, [α] -> α)
instance OperatorN α (() -> α) where
wrap_op f = (0, \[] -> f ())
instance OperatorN α (α -> α) where
wrap_op f = (1, \[x] -> f x)
instance OperatorN α ((α, α) -> α) where
wrap_op f = (2, \[x, y] -> f (x, y))
instance OperatorN α ((α, α, α) -> α) where
wrap_op f = (3, \[x, y, z] -> f (x, y, z))
instance OperatorN α ((α, α, α, α) -> α) where
wrap_op f = (4, \[x, y, z, w] -> f (x, y, z, w))
type WrappedOp α = (Int, [α] -> α)
fixwith_next :: Ord α => [WrappedOp α] -> Set α -> Set α
fixwith_next ops s = Set.unions $ s : map g ops where
g (0, f) = RMonad.return $ f []
g (arity, f) = s RMonad.>>= \x ->
g (arity - 1, \xs -> f (x:xs))
fixwith' ops s
| next <- fixwith_next ops s
, next /= s
= fixwith' ops next
fixwith' _ s = s
fixwith ops s = Set.toList $ fixwith' ops (Set.fromList s)
我使用RMonad
来清理它,并且像Daniel建议的那样使它变得懒惰。我认为大部分时间都花在了实际的乘法程序上,遗憾的是,所以我没有看到这种改变带来任何性能上的好处。懒惰虽然很酷。
notin :: Ord α => Set α -> Set α -> Set α
notin = flip Set.difference
class Ord α => OperatorN α β | β -> α where
next_values :: β -> Set α -> Set α
instance Ord α => OperatorN α (α -> α) where
next_values f s = notin s $ s RMonad.>>= \x -> RMonad.return (f x)
instance Ord α => OperatorN α (α -> α -> α) where
next_values f s = s RMonad.>>= \x -> next_values (f x) s
instance Ord α => OperatorN α (α -> α -> α -> α) where
next_values f s = s RMonad.>>= \x -> next_values (f x) s
instance Ord α => OperatorN α (α -> α -> α -> α -> α) where
next_values f s = s RMonad.>>= \x -> next_values (f x) s
-- bind lambdas with next_values
fixwith_next :: Ord α => [Set α -> Set α] -> Set α -> Set α
fixwith_next nv_bnd s = Set.unions $ map (\f -> f s) nv_bnd -- bound next values
fixwith' :: Ord α => [Set α -> Set α] -> Set α -> [α]
fixwith' ops s@(fixwith_next ops -> next)
| Set.size next == 0 = []
| otherwise = (Set.toList next) ++ fixwith' ops (Set.union s next)
fixwith ops s = (Set.toList s) ++ fixwith' ops s
fixwith_lst ops = fixwith ops . Set.fromList
例如
> take 3 $ fixwith [next_values (+2)] (Set.fromList [1])
[1,3,5]
我不得不失去一元手术,但这不是交易杀手。
答案 0 :(得分:1)
不,fix
是一只红鲱鱼。它计算的是一种不同于你的固定点。
你对arity的处理非常务实。有许多不同的方法可以让它更少一些锅炉;以这种方式看one of my previous answers。我相信有人会在最后添加另一个令人兴奋的基于类型数字的解决方案。 =)
为了提高效率,我不确定无论如何只能使用Eq
实例可以做得更好。您可以考虑从调用(本地)s
函数的结果中筛选出g
值 - 也就是说,让fixwith_next
仅返回新元素。这应该使终止检查更快,甚至可以使有效,懒惰fixwith
。
如果你的严格要求很高并需要Ord
个实例,那么使用真实的Set
也可能会提高效率。