我有一个由两个pointF
定义的线段,以及一个2D边界矩形。我想尽可能地在两个方向上扩展线段,以便该段与边界框的墙齐平。以下是我正在尝试做的一些例子:
有没有人对如何做到这一点有任何建议?
答案 0 :(得分:3)
将矩形定义为四行。
找到您的线与四条线中的每条线之间的交点。 (你的高中几何学怎么样?)
在这四个交叉点中,确定哪些点位于矩形的边界内。 (找到x和y值都在矩形范围内的交点。)
您的算法还必须允许以下边缘情况:
答案 1 :(得分:3)
这是python中的代码示例:
def extend(xmin, ymin, xmax, ymax, x1, y1, x2, y2):
if y1 == y2:
return (xmin, y1, xmax, y1)
if x1 == x2:
return (x1, ymin, x1, ymax)
# based on (y - y1) / (x - x1) == (y2 - y1) / (x2 - x1)
# => (y - y1) * (x2 - x1) == (y2 - y1) * (x - x1)
y_for_xmin = y1 + (y2 - y1) * (xmin - x1) / (x2 - x1)
y_for_xmax = y1 + (y2 - y1) * (xmax - x1) / (x2 - x1)
x_for_ymin = x1 + (x2 - x1) * (ymin - y1) / (y2 - y1)
x_for_ymax = x1 + (x2 - x1) * (ymax - y1) / (y2 - y1)
if ymin <= y_for_xmin <= ymax:
if xmin <= x_for_ymax <= xmax:
return (xmin, y_for_xmin, x_for_ymax, ymax)
if xmin <= x_for_ymin <= xmax:
return (xmin, y_for_xmin, x_for_ymin, ymin)
if ymin <= y_for_xmax <= ymax:
if xmin <= x_for_ymin <= xmax:
return (x_for_ymin, ymin, xmax, y_for_xmax)
if xmin <= x_for_ymax <= xmax:
return (x_for_ymax, ymax, xmax, y_for_xmax)
def test():
assert (2, 1, 2, 5) == extend(1, 1, 5, 5, 2, 3, 2, 4)
assert (1, 2, 4, 5) == extend(1, 1, 5, 5, 2, 3, 3, 4)
assert (1, 3, 5, 3) == extend(1, 1, 5, 5, 3, 3, 4, 3)
assert (1, 1, 5, 5) == extend(1, 1, 5, 5, 2, 2, 3, 3)
assert (3, 1, 5, 5) == extend(1, 1, 5, 5, 3.5, 2, 4, 3)
if __name__ == '__main__':
test()
它不会检查该段是否包含在矩形中,并且如果它在其外部也应该起作用(如果没有实际的段交叉,则返回None -implicit)。
它基于矩形具有与轴平行的段的假设。
答案 2 :(得分:1)
一种选择是定义在某个变量t范围内的线段的参数表示,然后定义四个线性方程式,用于定义盒子侧面的线条(在所有方向上无限延伸)。我们的想法是,当您 check where the segment hits these lines 时,对于每个方向,您可以扩展细分,您将获得两个交叉点 - 一个用于水平交叉点,另一个用于垂直交叉点。无论哪种内容都在你想要选择的内容中。
要执行此操作,请计算通过在每个方向上延伸线段而形成的线的参数t的值,在该方向上您可以击中四条边界线中的一条。我假设线段被参数化,使得t∈[0,1]。然后,您将获得(最多)四个t值,这些值对应于线与边界框相交的参数 - 两个值≥1表示线在一个方向上的延伸,两个值≤0表示线在另一个方向上的延伸。在这四个值中,您要选择最小的t≥1值和最大的t≥0的值(这些值表示在撞到墙壁之前延伸出每个方向上最短距离的线的参数) 。获得这两个参数后,将t的值插回到原始参数化中,以获得所需的两个交叉点,然后将新线段定义为从第一个到第二个的跨越。< / p>
请注意,此算法通常可用于扩展线段以填充任何凸多边形的边界,包括非轴对齐的矩形。您实际上不需要测试您找到的任何点是否包含在边界框中;您只需查看参数t的值,即可了解哪个交叉点更接近细分的端点。
希望这有帮助!
答案 3 :(得分:0)
改进的andredor代码 - 为线与顶部和底部或左右边缘相交时添加边缘情况。提供的代码用于处理以测试算法。通过单击鼠标设置第一个点,并使用当前鼠标指针位置连续更新第二个点。
int px = 100, py = 100;
void setup() {
size(480, 640);
background(102);
}
void draw() {
stroke(255);
rect(0, 0, 480, 640);
stroke(100);
if (mousePressed == true) {
px = mouseX;
py = mouseY;
}
extendLine(0, 0, 480, 640, px, py, mouseX, mouseY);
}
void extendLine(int xmin, int ymin, int xmax, int ymax, int x1, int y1, int x2, int y2) {
if (y1 == y2) {
line(xmin, y1, xmax, y1);
return;
}
if(x1 == x2) {
line(x1, ymin, x1, ymax);
return;
}
int y_for_xmin = y1 + (y2 - y1) * (xmin - x1) / (x2 - x1);
int y_for_xmax = y1 + (y2 - y1) * (xmax - x1) / (x2 - x1);
int x_for_ymin = x1 + (x2 - x1) * (ymin - y1) / (y2 - y1);
int x_for_ymax = x1 + (x2 - x1) * (ymax - y1) / (y2 - y1);
if (ymin <= y_for_xmin && y_for_xmin <= ymax
&& ymin <= y_for_xmax && y_for_xmax <= ymax) {
line(xmin, y_for_xmin, xmax, y_for_xmax);
return;
} else if (ymin <= y_for_xmin && y_for_xmin <= ymax) {
if (xmin <= x_for_ymax && x_for_ymax <= xmax) {
line(xmin, y_for_xmin, x_for_ymax, ymax);
return;
}
else if(xmin <= x_for_ymin && x_for_ymin <= xmax) {
line(xmin, y_for_xmin, x_for_ymin, ymin);
return;
}
} else if (ymin <= y_for_xmax && y_for_xmax <= ymax){
if (xmin <= x_for_ymin && x_for_ymin <= xmax){
line(x_for_ymin, ymin, xmax, y_for_xmax);
return;
}
if(xmin <= x_for_ymax && x_for_ymax <= xmax){
line(x_for_ymax, ymax, xmax, y_for_xmax);
return;
}
} else if (xmin <= x_for_ymin && x_for_ymin <= xmax
&& xmin <= x_for_ymax && x_for_ymax <= xmax) {
line(x_for_ymin, ymin, x_for_ymax, ymax);
return;
}
}
答案 4 :(得分:0)
@andredor算法的扩展版本,可以覆盖所有情况(还包括线段不平行于轴的情况,例如,线段对角线时)。对该方法作了详尽的解释作为文档。
def extend_line(xmin, ymin, xmax, ymax, x1, y1, x2, y2):
"""
Extend a line so that it reaches the walls of the bbox.
Args:
xmin(int): The very left coordinate of the bbox.
ymin(int): The very top coordinate of the bbox.
xmax(int): The very right coordinate of the bbox.
ymax(int): The very bottom coordinate of the bbox.
x1(int): The start x coordinate of the line.
y1(int): The start y coordinate of the line.
x2(int): The end x coordinate of the line.
y2(int): The end y coordinate of the line.
Returns:
- (list): The start and end (x, y) coordinates of the extended line.
"""
# If we imagine extending the line until it crosses the top wall of the
# bbox at point `(xmin, y_for_xmin)` and then imagine drawing
# perpendicular lines from each point `(x1, y1)`, `(x2, y2)` to the wall
# of the bbox, we end up with 2 perpendicular trianlges with the same
# angles - similar triangles. The rule of the similar triangles is that
# the side lengths of two similar triangles are proportional.
# That's how we get the equal ratios:
# `| y_for_xmin - y1 | / | xmin - x1 | == | y2 - y1 | / | x2 - x1 |`
# After we move some numbers from one to the other side of this equation,
# we get the value for `y_for_xmin`. That's where the line should cross
# the top wall of the bbox. We do the same for all other coordinates.
# NOTE: These calculations are valid if one starts to draw a line from top
# to botton and from left to right. In case the direction is reverted, we
# need to switch the min and max for each point (x, y). We do that below.
y_for_xmin = y1 + (y2 - y1) * (xmin - x1) / (x2 - x1)
y_for_xmax = y1 + (y2 - y1) * (xmax - x1) / (x2 - x1)
x_for_ymin = x1 + (x2 - x1) * (ymin - y1) / (y2 - y1)
x_for_ymax = x1 + (x2 - x1) * (ymax - y1) / (y2 - y1)
# The line is vertical
if (x2 - x1) < (y2 - y1):
# The line is drawn from right to left
if x1 > x2:
# Switch the min and max x coordinates for y,
# because the direction is from right (min) to left (max)
y_for_xmin, y_for_xmax = y_for_xmax, y_for_xmin
# The line is horizontal
else:
# The line is drawn from bottom to top
if y1 > y2:
# Switch the min and max y coordinates for x,
# because the direction is from bottom (min) to top (max)
x_for_ymin, x_for_ymax = x_for_ymax, x_for_ymin
# The line is drawn from right to left
if x1 > x2:
# Get the maximal value for x1.
# When `x_for_ymin < xmin`(line goes out of the
# bbox from the top), we clamp to xmin.
x1 = max(max(int(x_for_ymin), xmin), x1)
# The line is drawn from left to right
else:
# Get the minimal value for x1.
# When `x_for_ymin < xmin`(line goes out of the
# bbox from the top), we clamp to xmin.
x1 = min(max(int(x_for_ymin), xmin), x1)
# Get the maximal value for x2.
# When `x_for_ymax > xmax` (line goes out of the
# bbox from the bottom), we clamp to xmax.
x2 = max(min(int(x_for_ymax), xmax), x2)
# Get the minimal value for y1
# When `y_for_xmin < ymin`(line goes out of the
# bbox from the left), we clamp to ymin.
y1 = min(max(int(y_for_xmin), ymin), ymax)
# Get the minimal value for y2
y2 = min(int(y_for_xmax), ymax)
# Done
return [x1, y1, x2, y2]
答案 5 :(得分:0)
我通过@tsveti_iko 修改了代码,因为当 y_for_xmin 为“无穷大”(如果 x2 - x1 为 0)时,我遇到了一些 int 转换无法正常工作的问题
import math
extend_line(xmin, ymin, xmax, ymax, x1, y1, x2, y2):
"""
Extend a line so that it reaches the walls of the bbox.
Args:
xmin(int): The very left coordinate of the bbox.
ymin(int): The very top coordinate of the bbox.
xmax(int): The very right coordinate of the bbox.
ymax(int): The very bottom coordinate of the bbox.
x1(int): The start x coordinate of the line.
y1(int): The start y coordinate of the line.
x2(int): The end x coordinate of the line.
y2(int): The end y coordinate of the line.
Returns:
- (list): The start and end (x, y) coordinates of the extended line.
"""
# If we imagine extending the line until it crosses the top wall of the
# bbox at point `(xmin, y_for_xmin)` and then imagine drawing
# perpendicular lines from each point `(x1, y1)`, `(x2, y2)` to the wall
# of the bbox, we end up with 2 perpendicular trianlges with the same
# angles - similar triangles. The rule of the similar triangles is that
# the side lengths of two similar triangles are proportional.
# That's how we get the equal ratios:
# `| y_for_xmin - y1 | / | xmin - x1 | == | y2 - y1 | / | x2 - x1 |`
# After we move some numbers from one to the other side of this equation,
# we get the value for `y_for_xmin`. That's where the line should cross
# the top wall of the bbox. We do the same for all other coordinates.
# NOTE: These calculations are valid if one starts to draw a line from top
# to botton and from left to right. In case the direction is reverted, we
# need to switch the min and max for each point (x, y). We do that below.
y_for_xmin = y1 + (y2 - y1) * (xmin - x1) / (x2 - x1)
y_for_xmax = y1 + (y2 - y1) * (xmax - x1) / (x2 - x1)
x_for_ymin = x1 + (x2 - x1) * (ymin - y1) / (y2 - y1)
x_for_ymax = x1 + (x2 - x1) * (ymax - y1) / (y2 - y1)
# The line is vertical
if (x2 - x1) < (y2 - y1):
# The line is drawn from right to left
if x1 > x2:
# Switch the min and max x coordinates for y,
# because the direction is from right (min) to left (max)
y_for_xmin, y_for_xmax = y_for_xmax, y_for_xmin
# The line is horizontal
else:
# The line is drawn from bottom to top
if y1 > y2:
# Switch the min and max y coordinates for x,
# because the direction is from bottom (min) to top (max)
x_for_ymin, x_for_ymax = x_for_ymax, x_for_ymin
# The line is drawn from right to left
if x1 > x2:
# Get the maximal value for x1.
# When `x_for_ymin < xmin`(line goes out of the
# bbox from the top), we clamp to xmin.
x1 = max(max(int(x_for_ymin), xmin), x1)
# The line is drawn from left to right
else:
# Get the minimal value for x1.
# When `x_for_ymin < xmin`(line goes out of the
# bbox from the top), we clamp to xmin.
if math.isinf(x_for_ymin):
x1 = min(xmin,x1)
else:
x1 = min(max(int(x_for_ymin), xmin), x1)
# Get the maximal value for x2.
# When `x_for_ymax > xmax` (line goes out of the
# bbox from the bottom), we clamp to xmax.
if math.isinf(x_for_ymax):
x2 = max(xmax,x2)
else:
x2 = max(min(int(x_for_ymax), xmax), x2)
# Get the minimal value for y1
# When `y_for_xmin < ymin`(line goes out of the
# bbox from the left), we clamp to ymin.
if math.isinf(y_for_xmin):
y1 = min(ymin,ymax)
else:
y1 = min(max(int(y_for_xmin), ymin), ymax)
# Get the minimal value for y2
if math.isinf(y_for_xmin):
y2 = ymax
else:
y2 = min(int(y_for_xmax), ymax)
# Done
return [x1, y1, x2, y2]